Curr Oberstufe Physik

 

Schulinternen Lehrplan

zum Kernlehrplan für die gymnasiale Oberstufe

Des Lessing-Gymnasiums

Physik


Inhalt

Seite

2                Entscheidungen zum Unterricht  4

2.1            Unterrichtsvorhaben  4

2.1.1       Übersichtsraster Unterrichtsvorhaben  5

2.1.2       Konkretisierte Unterrichtsvorhaben  12

2.1.2.1    Einführungsphase  12

2.1.2.2    Qualifikationsphase: Grundkurs  19

2.1.2.3    Qualifikationsphase: Leistungskurs  36

2.2            Fachdidaktische Grundsätze  72

2.3            Leistungskonzept  74

2.4            Lehr- und Lernmittel74

3                Entscheidungen zu fach- und unterrichtsübergreifenden Fragen  75

4                Qualitätssicherung und Evaluation  76


1            Die Fachgruppe Physik des Lessinggymnasiums

Die Fachgruppe Physik versucht in besonderem Maße, jeden Lernenden in seiner Kompetenzentwicklung möglichst weit zu bringen. Außerdem wird angestrebt, Interesse an einem naturwissenschaftlich geprägten Studium oder Beruf zu wecken. In diesem Rahmen sollen u.a. Schülerinnen und Schüler mit besonderen Stärken im Bereich Physik unterstützt werden. Dieses drückt sich darin aus, dass in der Mittelstufe ein Physik-Chemie Wahlpflichtkurs angeboten wird, und dass in zwei unserer Züge im Rahmen der naturwissenschaftlichen Profilbildung eine erhöhte Stundenzahl Physik unterrichtet wird. In enger Kooperation mit dem DLR ermöglichen wir allen SuS der Jahrgangsstufe 9 und des Physik LKs einen Besuch im School-Lab. Besonders interessierten Lernenden wird hier die Möglichkeit gegeben Praktika durchzuführen oder ihre Facharbeit dort anzufertigen. Die Teilnahme von Schülergruppen an Wettbewerben wie Freesteyle-Physics oder der Physikolympiade wird von uns unterstützt. In enger Kooperation mit der Universität Köln ermöglichen wir besonders begabten Lernenden die Teilnahme an Seminaren. Hier können sie sogar schon Leistungsnachweise erwerben, die ihnen in einem späteren Studium anerkannt werden.

Der Unterricht wird – soweit möglich – auf der Stufenebene parallelisiert. Auch in der Oberstufe ist der Austausch zu Inhalten, methodischen Herangehensweisen und zu fachdidaktischen Problemen intensiv. Insbesondere in Doppelstunden können Experimente in einer einzigen Unterrichtsphase gründlich vorbereitet, durchgeführt und ausgewertet werden.

Darüber hinaus setzen wir Schwerpunkte in der Nutzung von neuen Medien, wozu regelmäßig kollegiumsinterne Fortbildungen angeboten werden. Im Fach Physik gehört dazu auch die Erfassung von Daten und Messwerten mit modernen digitalen Medien. An der Schule existieren zwei Computerräume, die nach Reservierung auch von Physikkursen für bestimmte Unterrichtsprojekte genutzt werden können.

In der Oberstufe befinden sich durchschnittlich ca. 140 Schülerinnen und Schüler in einer Stufe. Das Fach Physik ist in der Sekundarstufe II in der Regel mit zwei Grundkursen vertreten. Durch die Kooperation mit dem Maximilan-Kolbe-Gymnasium können seit dem Jahr 2002 in jedem Jahr Leistungskurse angeboten werden.


2         Entscheidungen zum Unterricht

2.1      Unterrichtsvorhaben

Die Darstellung der Unterrichtsvorhaben im schulinternen Lehrplan besitzt den Anspruch, sämtliche im Kernlehrplan angeführten Kompetenzen zu unterrichten. Dies entspricht der Verpflichtung jeder Lehrkraft, Lerngelegenheiten für ihre Lerngruppe so anzulegen, dass alle Kompetenzerwartungen des Kernlehrplans von den Schülerinnen und Schülern erworben werden können.

Die entsprechende Umsetzung erfolgt auf zwei Ebenen: der Übersichts- und der Konkretisierungsebene.

Im „Übersichtsraster Unterrichtsvorhaben“ (Kapitel 2.1.1) wird die für alle Lehrerinnen und Lehrer gemäß Fachkonferenzbeschluss verbindliche Verteilung der Unterrichtsvorhaben dargestellt. Das Übersichtsraster dient dazu, den Kolleginnen und Kollegen einen schnellen Überblick über die Zuordnung der Unterrichtsvorhaben zu den einzelnen Jahrgangsstufen sowie den im Kernlehrplan genannten Kompetenzen, Inhaltsfeldern und inhaltlichen Schwerpunkten sowie in der Fachkonferenz verabredeten verbindlichen Kontexten zu verschaffen. Um Klarheit für die Lehrkräfte herzustellen und die Übersichtlichkeit zu gewährleisten, werden in der Kategorie „Kompetenzen“ an dieser Stelle nur die übergeordneten Kompetenzerwartungen ausgewiesen, während die konkretisierten Kompetenzerwartungen erst auf der Ebene konkretisierter Unterrichtsvorhaben Berücksichtigung finden. Der ausgewiesene Zeitbedarf versteht sich als grobe Orientierungsgröße, die nach Bedarf über- oder unterschritten werden kann. Um Spielraum für Vertiefungen, besondere Schülerinteressen, aktuelle Themen bzw. die Erfordernisse anderer besonderer Ereignisse (z.B. Praktika, Kursfahrten o.ä.) zu erhalten, wurden im Rahmen dieses schulinternen Lehrplans ca. 75 Prozent der Bruttounterrichtszeit verplant.

Während der Fachkonferenzbeschluss zum „Übersichtsraster Unterrichtsvorhaben“ einschließlich der dort genannten Kontexte zur Gewährleistung vergleichbarer Standards sowie zur Absicherung von Lerngruppenübertritten und Lehrkraftwechseln für alle Mitglieder der Fachkonferenz Bindekraft entfalten soll, besitzt die exemplarische Ausweisung „konkretisierter Unterrichtsvorhaben“ (Kapitel 2.1.2, Tabellenspalten 3 und 4) empfehlenden Charakter, es sei denn, die Verbindlichkeit bestimmter Aspekte ist dort, markiert durch Fettdruck, explizit angegeben. Insbesondere Referendarinnen und Referendaren sowie neuen Kolleginnen und Kollegen dienen die konkretisierten Unterrichtsvorhaben vor allem zur standardbezogenen Orientierung in der neuen Schule, aber auch zur Verdeutlichung von unterrichtsbezogenen fachgruppeninternen Absprachen zu didaktisch-methodischen Zugängen, fächerübergreifenden Kooperationen, Lernmitteln und ‑orten sowie vorgesehenen Leistungsüberprüfungen, die im Einzelnen auch den Kapiteln 2.2 bis 2.4 zu entnehmen sind. Abweichungen von den empfohlenen Vorgehensweisen bezüglich der konkretisierten Unterrichtsvorhaben sind im Rahmen der pädagogischen Freiheit der Lehrkräfte jederzeit möglich. Sicherzustellen bleibt allerdings auch hier, dass im Rahmen der Umsetzung der Unterrichtsvorhaben insgesamt alle Kompetenzerwartungen des Kernlehrplans Berücksichtigung finden.


2.1.1    Übersichtsraster Unterrichtsvorhaben

Unterrichtsvorhaben der Einführungsphase

 

Kontext und Leitfrage

Inhaltsfelder, Inhaltliche Schwerpunkte

Kompetenzschwerpunkte

 

Physik in Sport und Verkehr

Wie lassen sich Bewegungen vermessen und analysieren?

Zeitbedarf: ca. 42 Ustd.

Mechanik

  • Kräfte und Bewegungen
  • Energie und Impuls

E7 Arbeits- und Denkweisen

K4 Argumentation

E5 Auswertung

E6 Modelle

UF2 Auswahl

 

Auf dem Weg in den Weltraum

Wie kommt man zu physikalischen Erkenntnissen über unser Sonnensystem?

Zeitbedarf: ca. 28 Ustd.

Mechanik

  • Gravitation
  • Kräfte und Bewegungen
  • Energie und Impuls

UF4 Vernetzung

E3 Hypothesen

E6 Modelle

E7 Arbeits- und Denkweisen

 

Schall

Wie lässt sich Schall physikalisch untersuchen?

Zeitbedarf: ca. 10 Ustd.

Mechanik

  • Schwingungen und Wellen
  • Kräfte und Bewegungen
  • Energie und Impuls

E2 Wahrnehmung und Messung

UF1 Wiedergabe

K1 Dokumentation

 

Summe Einführungsphase: 80 Stunden


 


Unterrichtsvorhaben der Qualifikationsphase (Q1) – GRUNDKURS

Kontext und Leitfrage

Inhaltsfelder, Inhaltliche Schwerpunkte

Kompetenzschwerpunkte

Erforschung des Photons

Wie kann das Verhalten von Licht beschrieben und erklärt werden?

Zeitbedarf: 14 Ustd.

Quantenobjekte

  • Photon (Wellenaspekt)

E2 Wahrnehmung und Messung

E5 Auswertung

K3 Präsentation

Erforschung des Elektrons

Wie können physikalische Eigenschaften wie die Ladung und die Masse eines Elektrons gemessen werden?

Zeitbedarf: 15 Ustd.

Quantenobjekte

  • Elektron (Teilchenaspekt)

UF1 Wiedergabe

UF3 Systematisierung

E5 Auswertung

E6 Modelle

Photonen und Elektronen als Quantenobjekte

Kann das Verhalten von Elektronen und Photonen durch ein gemeinsames Modell beschrieben werden?

Zeitbedarf: 5 Ustd.

Quantenobjekte

  • Elektron und Photon (Teilchenaspekt, Wellenaspekt)
  • Quantenobjekte und ihre Eigenschaften

E6 Modelle

E7 Arbeits- und Denkweisen

K4 Argumentation

B4 Möglichkeiten und Grenzen

Energieversorgung und Transport mit Generatoren und Transformatoren

Wie kann elektrische Energie gewonnen, verteilt und bereitgestellt werden?

Zeitbedarf: 18 Ustd.

Elektrodynamik

  • Spannung und elektrische Energie
  • Induktion
  • Spannungswandlung

UF2 Auswahl

UF4 Vernetzung

E2 Wahrnehmung und Messung

E5 Auswertung

E6 Modelle

K3 Präsentation

B1 Kriterien

Wirbelströme im Alltag

Wie kann man Wirbelströme technisch nutzen?

Zeitbedarf: 4 Ustd.

Elektrodynamik

  • Induktion

UF4 Vernetzung

E5 Auswertung

B1 Kriterien

Summe Qualifikationsphase (Q1) – GRUNDKURS: 56 Stunden


Unterrichtsvorhaben der Qualifikationsphase (Q2) – GRUNDKURS

Kontext und Leitfrage

Inhaltsfelder, Inhaltliche Schwerpunkte

Kompetenzschwerpunkte

Erforschung des Mikro- und Makrokosmos

Wie gewinnt man Informationen zum Aufbau der Materie?

Zeitbedarf: 13 Ustd.

Strahlung und Materie

  • Energiequantelung der Atomhülle
  • Spektrum der elektromagnetischen Strahlung

UF1 Wiedergabe

E5 Auswertung

E2 Wahrnehmung und Messung

Mensch und Strahlung

Wie wirkt Strahlung auf den Menschen?

Zeitbedarf: 9 Ustd.

Strahlung und Materie

  • Kernumwandlungen
  • Ionisierende Strahlung
  • Spektrum der elektromagnetischen Strahlung

UF1 Wiedergabe

B3 Werte und Normen

B4 Möglichkeiten und Grenzen

Forschung am CERN und DESY

Was sind die kleinsten Bausteine der Materie?

Zeitbedarf: 6 Ustd.

Strahlung und Materie

  • Standardmodell der Elementarteilchen

UF3 Systematisierung

E6 Modelle

Navigationssysteme

Welchen Einfluss hat Bewegung auf den Ablauf der Zeit?

Zeitbedarf: 5 Ustd.

Relativität von Raum und Zeit

  • Konstanz der Lichtgeschwindigkeit
  • Zeitdilatation

UF1 Wiedergabe

E6 Modelle

Teilchenbeschleuniger

Ist die Masse bewegter Teilchen konstant?

Zeitbedarf: 6 Ustd.

Relativität von Raum und Zeit

  • Veränderlichkeit der Masse
  • Energie-Masse Äquivalenz

UF4 Vernetzung

B1 Kriterien

Das heutige Weltbild der Physik

Welchen Beitrag liefert die Relativitätstheorie zur Erklärung unserer Welt?

Zeitbedarf: 2 Ustd.

Relativität von Raum und Zeit

  • Konstanz der Lichtgeschwindigkeit
  • Zeitdilatation
  • Veränderlichkeit der Masse
  • Energie-Masse Äquivalenz

E7 Arbeits- und Denkweisen

K3 Präsentation

Summe Qualifikationsphase (Q2) – GRUNDKURS: 41 Stunden




Unterrichtsvorhaben der Qualifikationsphase (Q1) – LEISTUNGSKURS

Kontext und Leitfrage

Inhaltsfelder, Inhaltliche Schwerpunkte

Kompetenzschwerpunkte

Satellitennavigation – Zeitmessung ist nicht absolut

Welchen Einfluss hat Bewegung auf den Ablauf der Zeit?

Zeitbedarf: 4 Ustd.

Relativitätstheorie

  • Konstanz der Lichtgeschwindigkeit
  • Problem der Gleichzeitigkeit

UF2 Auswahl

E6 Modelle

Höhenstrahlung

Warum erreichen Myonen aus der oberen Atmosphäre die Erdoberfläche?

Zeitbedarf: 4 Ustd.

Relativitätstheorie

  • Zeitdilatation und Längenkontraktion

E5 Auswertung

K3 Präsentation

Teilchenbeschleuniger – Warum Teilchen aus dem Takt geraten

Ist die Masse bewegter Teilchen konstant?

Zeitbedarf: 8 Ustd.

Relativitätstheorie

  • Relativistische Massenzunahme
  • Energie-Masse-Beziehung

UF4 Vernetzung

B1 Kriterien

Satellitennavigation – Zeitmessung unter dem Einfluss von Geschwindigkeit und Gravitation

Beeinflusst Gravitation den Ablauf der Zeit?

Zeitbedarf: 4 Ustd.

Relativitätstheorie

  • Der Einfluss der Gravitation auf die Zeitmessung

K3 Präsentation

Das heutige Weltbild

Welchen Beitrag liefert die Relativitätstheorie zur Erklärung unserer Welt?

Zeitbedarf: 4 Ustd.

Relativitätstheorie

  • Konstanz der Lichtgeschwindigkeit
  • Problem der Gleichzeitigkeit
  • Zeitdilatation und Längenkontraktion
  • Relativistische Massenzunahme
  • Energie-Masse-Beziehung
  • Der Einfluss der Gravitation auf die Zeitmessung

B4 Möglichkeiten und Grenzen



Kontext und Leitfrage

Inhaltsfelder, Inhaltliche Schwerpunkte

Kompetenzschwerpunkte

Untersuchung von Elektronen

Wie können physikalische Eigenschaften wie die Ladung und die Masse eines Elektrons gemessen werden?

Zeitbedarf: 24 Ustd.

Elektrik

  • Eigenschaften elektrischer Ladungen und ihrer Felder
  • Bewegung von Ladungsträgern in elektrischen und magnetischen Feldern

UF1 Wiedergabe

UF2 Auswahl

E6 Modelle

K3 Präsentation

B1 Kriterien

B4 Möglichkeiten und Grenzen

Aufbau und Funktionsweise wichtiger Versuchs- und Messapparaturen

Wie und warum werden physikalische Größen meistens elektrisch erfasst und wie werden sie verarbeitet?

Zeitbedarf: 22 Ustd.

Elektrik

  • Eigenschaften elektrischer Ladungen und ihrer Felder
  • Bewegung von Ladungsträgern in elektrischen und magnetischen Feldern

UF2 Auswahl

UF4 Vernetzung

E1 Probleme und Fragestellungen

E5 Auswertung

E6 Modelle

K3 Präsentation

B1 Kriterien

B4 Möglichkeiten und Grenzen

Erzeugung, Verteilung und Bereitstellung elektrischer Energie

Wie kann elektrische Energie gewonnen, verteilt und bereitgestellt werden?

Zeitbedarf: 22 Ustd.

Elektrik

  • Elektromagnetische Induktion

UF2 Auswahl

E6 Modelle

B4 Möglichkeiten und Grenzen

Physikalische Grundlagen der drahtlosen Nachrichtenübermittlung

Wie können Nachrichten ohne Materietransport übermittelt werden?

Zeitbedarf: 28 Ustd.

Elektrik

  • Elektromagnetische Schwingungen und Wellen

UF1 Wiedergabe

UF2 Auswahl

E4 Untersuchungen und Experimente

E5 Auswertung

E6 Modelle

K3 Präsentation

B1 Kriterien

B4 Möglichkeiten und Grenzen

Summe Qualifikationsphase (Q1) – LEISTUNGSKURS: 120 Stunden


 

Unterrichtsvorhaben der Qualifikationsphase (Q2) – LEISTUNGSKURS

Kontext und Leitfrage

Inhaltsfelder, Inhaltliche Schwerpunkte

Kompetenzschwerpunkte

Erforschung des Photons

Besteht Licht doch aus Teilchen?

Zeitbedarf: 10 Ustd.

Quantenphysik

  • Licht und Elektronen als Quantenobjekte
  • Welle-Teilchen-Dualismus
  • Quantenphysik und klassische Physik

UF2 Auswahl

E6 Modelle

E7 Arbeits- und Denkweisen

Röntgenstrahlung, Erforschung des Photons

Was ist Röntgenstrahlung?

Zeitbedarf: 9 Ustd.

Quantenphysik

  • Licht und Elektronen als Quantenobjekte

UF1 Wiedergabe

E6 Modelle

Erforschung des Elektrons

Kann das Verhalten von Elektronen und Photonen durch ein gemeinsames Modell beschrieben werden?

Zeitbedarf: 6 Ustd.

Quantenphysik

  • Welle-Teilchen-Dualismus

UF1 Wiedergabe

K3 Präsentation

Die Welt kleinster Dimensionen – Mikroobjekte und Quantentheorie

Was ist anders im Mikrokosmos?

Zeitbedarf: 10 Ustd.

Quantenphysik

  • Welle-Teilchen-Dualismus und Wahrscheinlichkeitsinterpretation
  • Quantenphysik und klassische Physik

UF1 Wiedergabe

E7 Arbeits- und Denkweisen


Kontext und Leitfrage

Inhaltsfelder, Inhaltliche Schwerpunkte

Kompetenzschwerpunkte

Geschichte der Atommodelle, Lichtquellen und ihr Licht

Wie gewinnt man Informationen zum Aufbau der Materie?

Zeitbedarf: 10 Ustd.

Atom-, Kern- und Elementarteilchenphysik

  • Atomaufbau

UF1 Wiedergabe

E5 Auswertung

E7 Arbeits- und Denkweisen

Physik in der Medizin (Bildgebende Verfahren, Radiologie)

Wie nutzt man Strahlung in der Medizin?

Zeitbedarf: 14 Ustd.

Atom-, Kern- und Elementarteilchenphysik

  • Ionisierende Strahlung
  • Radioaktiver Zerfall

UF3 Systematisierung

E6 Modelle

UF4 Vernetzung

(Erdgeschichtliche) Altersbestimmungen

Wie funktioniert die 14C-Methode?

Zeitbedarf: 10 Ustd.

Atom-, Kern- und Elementarteilchenphysik

  • Radioaktiver Zerfall

UF2 Auswahl

E5 Auswertung

Energiegewinnung durch nukleare Prozesse

Wie funktioniert ein Kernkraftwerk?

Zeitbedarf: 9 Ustd.

Atom-, Kern- und Elementarteilchenphysik

  • Kernspaltung und Kernfusion
  • Ionisierende Strahlung

B1 Kriterien

UF4 Vernetzung

Forschung am CERN und DESY – Elementarteilchen und ihre fundamentalen Wechselwirkungen

Was sind die kleinsten Bausteine der Materie?

Zeitbedarf: 11 Ustd.

Atom-, Kern- und Elementarteilchenphysik

  • Elementarteilchen und ihre Wechselwirkungen

UF3 Systematisierung

K2 Recherche

Summe Qualifikationsphase (Q2) – LEISTUNGSKURS: 89 Stunden


2.1.2    Konkretisierte Unterrichtsvorhaben

2.1.2.1            Einführungsphase

Inhaltsfeld: Mechanik

Kontext: Physik in Sport und Verkehr

Leitfrage: Wie lassen sich Bewegungen vermessen, analysieren und optimieren?

Inhaltliche Schwerpunkte: Kräfte und Bewegungen, Energie und Impuls

Kompetenzschwerpunkte: Schülerinnen und Schüler können …

(E7) naturwissenschaftliches Arbeiten reflektieren sowie Veränderungen im Weltbild und in Denk- und Arbeitsweisen in ihrer historischen und kulturellen Entwicklung darstellen

(K4) physikalische Aussagen und Behauptungen mit sachlich fundierten und überzeugenden Argumenten begründen bzw. kritisieren.

(E5) Daten qualitativ und quantitativ im Hinblick auf Zusammenhänge, Regeln oder mathematisch zu formulierende Gesetzmäßigkeiten analysieren und Ergebnisse verallgemeinern,

(E6) Modelle entwickeln sowie physikalisch-technische Prozesse mithilfe von theoretischen Modellen, mathematischen Modellierungen, Gedankenexperimenten und Simulationen erklären oder vorhersagen,

(UF2) zur Lösung physikalischer Probleme zielführend Definitionen, Konzepte sowie funktionale Beziehungen zwischen physikalischen Größen angemessen und begründet auswählen,

Inhalt

(Ustd. à 45 min)

Kompetenzen

Die Schülerinnen und Schüler…

Experiment / Medium

Kommentar/didaktische Hinweise

Beschreibung von Bewegungen im Alltag und im Sport

Aristoteles vs. Galilei

(2 Ustd.)

stellen Änderungen in den Vorstellungen zu Bewegungen und zum Sonnensystem beim Übergang vom Mittelalter zur Neuzeit dar (UF3, E7),

entnehmen Kernaussagen zu naturwissenschaftlichen Positionen zu Beginn der Neuzeit aus einfachen historischen Texten (K2, K4).

Textauszüge aus Galileis Discorsi zur Mechanik und zu den Fallgesetzen

Handexperimente zur qualitativen Beobachtung von Fallbewegungen (z. B. Stahlkugel, glattes bzw. zur Kugel zusammengedrücktes Papier, evakuiertes Fallrohr mit Feder und Metallstück)

Einstieg über faire Beurteilung sportlicher Leistungen (Weitsprung in West bzw. Ostrichtung, Speerwurf usw., Konsequenzen aus der Ansicht einer ruhenden oder einer bewegten Erde)

Analyse alltäglicher Bewegungsabläufe, Analyse von Kraftwirkungen auf reibungsfreie Körper

Vorstellungen zur Trägheit und zur Fallbewegung, Diskussion von Alltagsvorstellungen und physikalischen Konzepten

Vergleich der Vorstellungen von Aristoteles und Galilei zur Bewegung, Folgerungen für Vergleichbarkeit von sportlichen Leistungen.

Beschreibung und Analyse von linearen Bewegungen

(16 Ustd.)

unterscheiden gleichförmige und gleichmäßig beschleunigte Bewegungen und erklären zugrundeliegende Ursachen (UF2),

vereinfachen komplexe Bewegungs- und Gleichgewichtszustände durch Komponentenzerlegung bzw. Vektoraddition (E1),

planen selbstständig Experimente zur quantitativen und qualitativen Untersuchung einfacher Zusammenhänge (u.a. zur Analyse von Bewegungen), führen sie durch, werten sie aus und bewerten Ergebnisse und Arbeitsprozesse (E2, E5, B1),

stellen Daten in Tabellen und sinnvoll skalierten Diagrammen (u. a. t-s– und t-v-Diagramme, Vektordiagramme) von Hand und mit digitalen Werkzeugen angemessen präzise dar (K1, K3),

erschließen und überprüfen mit Messdaten und Diagrammen funktionale Beziehungen zwischen mechanischen Größen (E5),

bestimmen mechanische Größen mit mathematischen Verfahren und mithilfe digitaler Werkzeuge (u.a. Tabellenkalkulation, GTR) (E6),

Digitale Videoanalyse (z.B. mit VIANA, Tracker) von Bewegungen im Sport (Fahrradfahrt o. anderes Fahrzeug, Sprint, Flug von Bällen)

Luftkissenfahrbahn mit digitaler Messwerterfassung:

Messreihe zur gleichmäßig beschleunigten Bewegung

Freier Fall und Bewegung auf einer schiefen Ebene

Wurfbewegungen

Basketball, Korbwurf, Abstoß beim Fußball, günstigster Winkel

Einführung in die Verwendung von digitaler Videoanalyse (Auswertung von Videosequenzen, Darstellung der Messdaten in Tabellen und Diagrammen mithilfe einer Software zur Tabellenkalkulation)

Unterscheidung von gleichförmigen und (beliebig) beschleunigten Bewegungen (insb. auch die gleichmäßig beschleunigte Bewegung)

Erarbeitung der Bewegungsgesetze der gleichförmigen Bewegung

Untersuchung gleichmäßig beschleunigter Bewegungen im Labor

Erarbeitung der Bewegungsgesetze der gleichmäßig beschleunigten Bewegung

Erstellung von t-s‑, t-v- und t-a-Diagrammen (auch mithilfe digitaler Hilfsmittel), die Interpretation und Auswertung derartiger   Diagramme sollte intensiv geübt werden.

Planung von Experimenten durch die Schüler (Auswertung mithilfe der Videoanalyse)

Schlussfolgerungen bezüglich des Einflusses der Körpermasse bei Fallvorgängen, auch die Argumentation von Galilei ist besonders gut geeignet, um Argumentationsmuster in Physik explizit zu besprechen

Wesentlich: Erarbeitung des Superpositionsprinzips (Komponentenzerlegung und Addition vektorieller Größen)

Herleitung der Gleichung für die Bahnkurve nur optional

Newton’sche Gesetze, Kräfte und Bewegung

(12 Ustd.)

berechnen mithilfe des Newton’schen Kraftgesetzes Wirkungen einzelner oder mehrerer Kräfte auf Bewegungszustände und sagen sie unter dem Aspekt der Kausalität vorher (E6),

entscheiden begründet, welche Größen bei der Analyse von Bewegungen zu berücksichtigen oder zu vernachlässigen sind (E1, E4),

reflektieren Regeln des Experimentierens in der Planung und Auswertung von Versuchen (u. a. Zielorientierung, Sicherheit, Variablenkontrolle, Kontrolle von Störungen und Fehlerquellen) (E2, E4),

geben Kriterien (u.a. Objektivität, Reproduzierbarkeit, Widerspruchsfreiheit, Überprüfbarkeit) an, um die Zuverlässigkeit von Messergebnissen und physikalischen Aussagen zu beurteilen, und nutzen diese bei der Bewertung von eigenen und fremden Untersuchungen (B1),

Luftkissenfahrbahn mit digitaler Messwerterfassung:

Messung der Beschleunigung eines Körpers in Abhängigkeit von der beschleunigenden Kraft

Kennzeichen von Laborexperimenten im Vergleich zu natürlichen Vorgängen besprechen, Ausschalten bzw. Kontrolle bzw. Vernachlässigen von Störungen

Erarbeitung des Newton’schen Bewegungsgesetzes

Definition der Kraft als Erweiterung des Kraftbegriffs aus der Sekundarstufe I.

Berechnung von Kräften und Beschleunigungen Einfluss von Reibungskräften

Energie und Impuls

(12 Ustd.)

erläutern die Größen Position, Strecke, Geschwindigkeit, Beschleunigung, Masse, Kraft, Arbeit, Energie, Impuls und ihre Beziehungen zueinander an unterschiedlichen Beispielen (UF2, UF4),

analysieren in verschiedenen Kontexten Bewegungen qualitativ und quantitativ sowohl aus einer Wechselwirkungsperspektive als auch aus einer energetischen Sicht (E1, UF1),

verwenden Erhaltungssätze (Energie- und Impulsbilanzen), um Bewegungszustände zu erklären sowie Bewegungsgrößen zu berechnen (E3, E6),

beschreiben eindimensionale Stoßvorgänge mit Wechselwirkungen und Impulsänderungen (UF1),

begründen argumentativ Sachaussagen, Behauptungen und Vermutungen zu mechanischen Vorgängen und ziehen dabei erarbeitetes Wissen sowie Messergebnisse oder andere objektive Daten heran (K4),

bewerten begründet die Darstellung bekannter mechanischer und anderer physikalischer Phänomene in verschiedenen Medien (Printmedien, Filme, Internet) bezüglich ihrer Relevanz und Richtigkeit (K2, K4),

Fadenpendel (Schaukel) (energetisch)

Federpendel

An dieser Stelle sollen das experimentell-erkundende Verfahren und das deduktive Verfahren zur Erkenntnisgewinnung am Beispiel der Herleitung der Gleichung für die Spannenerie als zwei wesentliche Erkenntnismethoden der Physik bearbeitet werden.

Luftkissenfahrbahn mit digitaler Messwerterfassung:

Messreihen zu elastischen und unelastischen Stößen

Begriffe der Arbeit und der Energie aus der SI aufgreifen und wiederholen

Deduktive Herleitung der Formeln für die mechanischen Energiearten aus den Newton‘schen Gesetzen und der Definition der Arbeit

Energieerhaltung an Beispielen (Pendel, Achterbahn, Halfpipe) erarbeiten und für Berechnungen nutzen

Energetische Analysen in verschiedenen Sportarten (Hochsprung, Turmspringen, Turnen, Stabhochsprung, Bobfahren, Skisprung)

Begriff des Impulses und Impuls als Erhaltungsgröße

Elastischer und inelastischer Stoß auch an anschaulichen Beispielen aus dem Sport (z.B. Impulserhaltung bei Ballsportarten, Kopfball beim Fußball, Kampfsport)

Hinweis: Erweiterung des Impulsbegriffs am Ende des Kontextes „Auf dem Weg in den Weltraum“

42 Ustd.

Summe

   


Kontext: Auf dem Weg in den Weltraum

Leitfrage: Wie kommt man zu physikalischen Erkenntnissen über unser Sonnensystem?

Inhaltliche Schwerpunkte: Gravitation, Kräfte und Bewegungen, Energie und Impuls

Kompetenzschwerpunkte: Schülerinnen und Schüler können

(UF4) Zusammenhänge zwischen unterschiedlichen natürlichen bzw. technischen Vorgängen auf der Grundlage eines vernetzten physikalischen Wissens erschließen und aufzeigen.

(E3) mit Bezug auf Theorien, Modelle und Gesetzmäßigkeiten auf deduktive Weise Hypothesen generieren sowie Verfahren zu ihrer Überprüfung ableiten,

(E6) Modelle entwickeln sowie physikalisch-technische Prozesse mithilfe von theoretischen Modellen, mathematischen Modellierungen, Gedankenexperimenten und Simulationen erklären oder vorhersagen,

(E7) naturwissenschaftliches Arbeiten reflektieren sowie Veränderungen im Weltbild und in Denk- und Arbeitsweisen in ihrer historischen und kulturellen Entwicklung darstellen.

Inhalt

(Ustd. à 45 min)

Kompetenzen

Die Schülerinnen und Schüler…

Experiment / Medium

Kommentar/didaktische Hinweise

Aristotelisches Weltbild, Kopernikanische Wende

(3 Ustd.)

stellen Änderungen in den Vorstellungen zu Bewegungen und zum Sonnensystem beim Übergang vom Mittelalter zur Neuzeit dar (UF3, E7),

Arbeit mit dem Lehrbuch:
Geozentrisches und heliozentrisches Planetenmodell

Historie: Verschiedene Möglichkeiten der Interpretation der Beobachtungen

Planetenbewegungen und Kepler’sche Gesetze

(3 Ustd.)

beschreiben an Beispielen Veränderungen im Weltbild und in der Arbeitsweise der Naturwissenschaften, die durch die Arbeiten von Kopernikus, Kepler, Galilei und Newton initiiert wurden (E7, B3).

Animationen zur Darstellung der Planetenbewegungen

Orientierung am Himmel

Beobachtungsaufgabe: Finden von Planeten am Nachthimmel

Tycho Brahes Messungen, Keplers Schlussfolgerungen

Benutzung geeigneter Apps

Newton’sches Gravitationsgesetz, Gravitationsfeld

(8 Ustd.)

beschreiben Wechselwirkungen im Gravitationsfeld und verdeutlichen den Unterschied zwischen Feldkonzept und Kraftkonzept (UF2, E6),

ermitteln mithilfe der Kepler´schen Gesetze und des Gravitationsgesetzes astronomische Größen (E6),

Arbeit mit dem Lehrbuch, Recherche im Internet

Gravitationsdrehwaage

Newton’sches Gravitationsgesetz als Zusammenfassung bzw. Äquivalent der Kepler’schen Gesetze

Feldbegriff diskutieren, Definition der Feldstärke über Messvorschrift „Kraft auf Probekörper“

Kreisbewegungen

(8 Ustd.)

analysieren und berechnen auftretende Kräfte bei Kreisbewegungen (E6),

Messung der Zentralkraft

Beschreibung von gleichförmigen Kreisbewegungen, Winkelgeschwindigkeit, Periode, Bahngeschwindigkeit, Frequenz

Experimentell-erkundende Erarbeitung der Formeln für Zentripetalkraft und Zentripetalbeschleunigung:

Herausstellen der Notwendigkeit der Konstanthaltung der restlichen Größen bei der experimentellen Bestimmung einer von mehreren anderen Größen abhängigen physikalischen Größe (hier bei der Bestimmung der Zentripetalkraft in Abhängigkeit von der Masse des rotierenden Körpers)

Massenbestimmungen im Planetensystem, Fluchtgeschwindigkeiten

Bahnen von Satelliten und Planeten

Impuls und Impulserhaltung, Rückstoß

(6 Ustd.)

verwenden Erhaltungssätze (Energie- und Impulsbilanzen), um Bewegungszustände zu erklären sowie Bewegungsgrößen zu berechnen (E3, E6),

erläutern unterschiedliche Positionen zum Sinn aktueller Forschungsprogramme (z.B. Raumfahrt, Mobilität) und beziehen Stellung dazu (B2, B3).

Skateboards und Medizinball

Wasserrakete

Raketentriebwerke für Modellraketen

Recherchen zu aktuellen Projekten von ESA und DLR, auch zur Finanzierung

Impuls und Rückstoß

Bewegung einer Rakete im luftleeren Raum

Untersuchungen mit einer Wasserrakete, Simulation des Fluges einer Rakete in einer Excel-Tabelle

Debatte über wissenschaftlichen Wert sowie Kosten und Nutzen ausgewählter Programme

28 Ustd.

Summe

   


Kontext: Schall

Leitfrage: Wie lässt sich Schall physikalisch untersuchen?

Inhaltliche Schwerpunkte: Schwingungen und Wellen, Kräfte und Bewegungen, Energie und Impuls

Kompetenzschwerpunkte: Schülerinnen und Schüler können

(E2) kriteriengeleitet beobachten und messen sowie auch komplexe Apparaturen für Beobachtungen und Messungen erläutern und sachgerecht verwenden,

(UF1) physikalische Phänomene und Zusammenhänge unter Verwendung von Theorien, übergeordneten Prinzipien/Gesetzen und Basiskonzepten beschreiben und erläutern,

(K1) Fragestellungen, Untersuchungen, Experimente und Daten nach gegebenen Strukturen dokumentieren und stimmig rekonstruieren, auch mit Unterstützung digitaler Werkzeuge

Inhalt

(Ustd. à 45 min)

Kompetenzen

Die Schülerinnen und Schüler…

Experiment / Medium

Kommentar/didaktische Hinweise

Entstehung und Ausbreitung von Schall

(4 Ustd.)

erklären qualitativ die Ausbreitung mechanischer Wellen (Transversal- oder Longitudinalwelle) mit den Eigenschaften des Ausbreitungsmediums (E6),

Stimmgabeln, Lautsprecher, Frequenzgenerator, Frequenzmessgerät, Schallpegelmesser, rußgeschwärzte Glasplatte, Schreibstimmgabel, Klingel und Vakuumglocke

Erarbeitung der Grundgrößen zur Beschreibung von Schwingungen und Wellen:

Frequenz (Periode) und Amplitude mittels der Höreindrücke des Menschen

Modelle der Wellenausbreitung

(4 Ustd.)

beschreiben Schwingungen und Wellen als Störungen eines Gleichgewichts und identifizieren die dabei auftretenden Kräfte (UF1, UF4),

Lange Schraubenfeder, Wellenwanne

Entstehung von Longitudinal- und Transversalwellen

Ausbreitungsmedium, Möglichkeit der Ausbreitung longitudinaler. bzw. transversaler Schallwellen in Gasen, Flüssigkeiten und festen Körpern

Erzwungene Schwingungen und Resonanz

(2 Ustd.)

erläutern das Auftreten von Resonanz mithilfe von Wechselwirkung und Energie (UF1).

Stimmgabeln

Resonanz (auch Tacoma-Bridge, Millennium-Bridge)

Resonanzkörper von Musikinstrumenten

10 Ustd.

Summe

   


2.1.2.2Qualifikationsphase: Grundkurs

Inhaltsfeld: Quantenobjekte (GK)

Kontext: Erforschung des Photons

Leitfrage: Wie kann das Verhalten von Licht beschrieben und erklärt werden?

Inhaltliche Schwerpunkte: Photon (Wellenaspekt)

Kompetenzschwerpunkte: Schülerinnen und Schüler können

(E2) kriteriengeleitet beobachten und messen sowie auch komplexe Apparaturen für Beobachtungen und Messungen erläutern und sachgerecht verwenden,

(E5) Daten qualitativ und quantitativ im Hinblick auf Zusammenhänge, Regeln oder mathematisch zu formulierende Gesetzmäßigkeiten analysieren und Ergebnisse verallgemeinern,

(K3) physikalische Sachverhalte und Arbeitsergebnisse unter Verwendung situationsangemessener Medien und Darstellungsformen adressatengerecht präsentieren,

Inhalt

(Ustd. à 45 min)

Kompetenzen

Die Schülerinnen und Schüler…

Experiment / Medium

Kommentar/didaktische Hinweise

Beugung und Interferenz Lichtwellenlänge, Lichtfrequenz, Kreiswellen,
ebene Wellen,
Beugung, Brechung

(7 Ustd.)

veranschaulichen mithilfe derWellenwanne qualitativ unter Verwendung von Fachbegriffen auf der Grundlage des Huygens’schen Prinzips Kreiswellen, ebene Wellen sowie die Phänomene Beugung, Interferenz, Reflexion und Brechung (K3),

bestimmen Wellenlängen und Frequenzen von Licht mit Doppelspalt und Gitter (E5),

Doppelspalt und Gitter, Wellenwanne

quantitative Experimente mit Laserlicht

Ausgangspunkt: Beugung von Laserlicht

Modellbildung mit Hilfe der Wellenwanne (ggf. als Schülerpräsentation)

Bestimmung der Wellenlängen von Licht mit Doppelspalt und Gitter

Sehr schön sichtbare Beugungsphänomene finden sich vielfach bei Meereswellen (s. Google-Earth)

Quantelung der Energie von Licht,
Austrittsarbeit

(7 Ustd.)

demonstrieren anhand eines Experiments zum Photoeffekt den Quantencharakter von Licht und bestimmen den Zusammenhang von Energie, Wellenlänge und Frequenz von Photonen sowie die Austrittsarbeit der Elektronen (E5, E2),

Photoeffekt

Hallwachsversuch mit Vakuum-photozelle

Roter Faden: Von Hallwachs bis Elektronenbeugung

Bestimmung des Planck’schen Wirkungsquantums und der Austrittsarbeit

Hinweis: Formel für die max. kinetische Energie der Photoelektronen wird zunächst vorgegeben.

Der Zusammenhang zwischen Spannung, Ladung und Überführungsarbeit wird ebenfalls vorgegeben und nur plausibel gemacht. Er muss an dieser Stelle nicht grundlegend hergeleitet werden

14 Ustd.

Summe

   

 

Kontext: Erforschung des Elektrons

Leitfrage: Wie können physikalische Eigenschaften wie die Ladung und die Masse eines Elektrons gemessen werden?

Inhaltliche Schwerpunkte: Elektron (Teilchenaspekt)

Kompetenzschwerpunkte: Schülerinnen und Schüler können

(UF1) physikalische Phänomene und Zusammenhänge unter Verwendung von Theorien, übergeordneten Prinzipien / Gesetzen und Basiskonzepten beschreiben und erläutern,

(UF2) zur Lösung physikalischer Probleme zielführend Definitionen, Konzepte sowie funktionale Beziehungen zwischen physikalischen Größen angemessen und begründet auswählen,

(UF3) physikalische Sachverhalte und Erkenntnisse nach fachlichen Kriterien ordnen und strukturieren,

(E5) Daten qualitativ und quantitativ im Hinblick auf Zusammenhänge, Regeln oder mathematisch zu formulierende Gesetzmäßigkeiten analysieren und Ergebnisse verallgemeinern,

(E6) Modelle entwickeln sowie physikalisch-technische Prozesse mithilfe von theoretischen Modellen, mathematischen Modellierungen, Gedankenexperimenten und Simulationen erklären oder vorhersagen,

Inhalt

(Ustd. à 45 min)

Kompetenzen

Die Schülerinnen und Schüler…

Experiment / Medium

Kommentar

Elementarladung

(5 Ustd.)

erläutern anhand einer vereinfachten Version des Millikanversuchs die grundlegenden Ideen und Ergebnisse zur Bestimmung der Elementarladung (UF1, E5),

untersuchen, ergänzend zum Realexperiment, Computersimulationen zum Verhalten von Quantenobjekten (E6).

schwebender Wattebausch

Millikanversuch

Schwebefeldmethode (keine Stokes´sche Reibung)

Auch als Simulation möglich

Begriff des elektrischen Feldes in Analogie zum Gravitationsfeld besprechen, Definition der Feldstärke über die Kraft auf einen Probekörper, in diesem Fall die Ladung

Homogenes elektrisches Feld im Plattenkondensator, Zusammenhangs zwischen Feldstärke im Plattenkondensator, Spannung und Abstand der Kondensatorplatten vorgeben und durch Auseinanderziehen der geladenen Platten demonstrieren

Elektronenmasse

(7 Ustd.)

beschreiben Eigenschaften und Wirkungen homogener elektrischer und magnetischer Felder und erläutern deren Definitionsgleichungen. (UF2, UF1),

bestimmen die Geschwindigkeitsänderung eines Ladungsträgers nach Durchlaufen einer elektrischen Spannung (UF2),

modellieren Vorgänge im Fadenstrahlrohr (Energie der Elektronen, Lorentzkraft) mathematisch, variieren Parameter und leiten dafür deduktiv Schlussfolgerungen her, die sich experimentell überprüfen lassen, und ermitteln die Elektronenmasse (E6, E3, E5),

e/m-Bestimmung mit dem Fadenstrahlrohr und Helmholtzspulenpaar

auch Ablenkung des Strahls mit Permanentmagneten (Lorentzkraft)

evtl. Stromwaage

Messung der Stärke von Magnetfeldern mit der Hallsonde

Einführung der 3-Finger-Regel und Angabe der Gleichung für die Lorentzkraft:

Einführung des Begriffs des magnetischen Feldes (in Analogie zu den beiden anderen Feldern durch Kraft auf Probekörper, in diesem Fall bewegte Ladung oder stromdurchflossener Leiter) und des Zusammenhangs zwischen magnetischer Kraft, Leiterlänge und Stromstärke.

Vertiefung des Zusammenhangs zwischen Spannung, Ladung und Überführungsarbeit am Beispiel Elektronenkanone.

Streuung von Elektronen an Festkörpern, de Broglie-Wellenlänge

(3 Ustd.)

erläutern die Aussage der de Broglie-Hypothese, wenden diese zur Erklärung des Beugungsbildes beim Elektronenbeugungsexperiment an und bestimmen die Wellenlänge der Elektronen (UF1, UF2, E4).

Experiment zur Elektronenbeugung an polykristallinem Graphit

Veranschaulichung der Bragg-Bedingung analog zur Gitterbeugung

15 Ustd.

Summe

   


Kontext: Photonen und Elektronen als Quantenobjekte

Leitfrage: Kann das Verhalten von Elektronen und Photonen durch ein gemeinsames Modell beschrieben werden?

Inhaltliche Schwerpunkte: Elektron und Photon (Teilchenaspekt, Wellenaspekt), Quantenobjekte und ihre Eigenschaften

Kompetenzschwerpunkte: Schülerinnen und Schüler können

(E6) Modelle entwickeln sowie physikalisch-technische Prozesse mithilfe von theoretischen Modellen, mathematischen Modellierungen, Gedankenexperimenten und Simulationen erklären oder vorhersagen,

(E7) naturwissenschaftliches Arbeiten reflektieren sowie Veränderungen im Weltbild und in Denk- und Arbeitsweisen in ihrer historischen und kulturellen Entwicklung darstellen.

(K4) sich mit anderen über physikalische Sachverhalte und Erkenntnisse kritisch-konstruktiv austauschen und dabei Behauptungen oder Beurteilungen durch Argumente belegen bzw. widerlegen.

(B4) begründet die Möglichkeiten und Grenzen physikalischer Problemlösungen und Sichtweisen bei innerfachlichen, naturwissenschaftlichen und gesellschaftlichen Fragestellungen bewerten.

(K3) physikalische Sachverhalte und Arbeitsergebnisse unter Verwendung situationsangemessener Medien und Darstellungsformen adressatengerecht präsentieren,

Inhalt

(Ustd. à 45 min)

Kompetenzen

Die Schülerinnen und Schüler…

Experiment / Medium

Kommentar

Licht und Materie

(5 Ustd.)

erläutern am Beispiel der Quantenobjekte Elektron und Photon die Bedeutung von Modellen als grundlegende Erkenntniswerkzeuge in der Physik (E6, E7),

verdeutlichen die Wahrscheinlichkeitsinterpretation für Quantenobjekte unter Verwendung geeigneter Darstellungen (Graphiken, Simulationsprogramme) (K3).

zeigen an Beispielen die Grenzen und Gültigkeitsbereiche von Wellen- und Teilchenmodellen für Licht und Elektronen auf (B4, K4),

beschreiben und diskutieren die Kontroverse um die Kopenhagener Deutung und den Welle-Teilchen-Dualismus (B4, K4).

Computersimulation

Doppelspalt

Photoeffekt

Reflexion der Bedeutung der Experimente für die Entwicklung der Quantenphysik

5 Ustd.

Summe

   


Inhaltsfeld: Elektrodynamik (GK)

Kontext: Energieversorgung und Transport mit Generatoren und Transformatoren

Leitfrage: Wie kann elektrische Energie gewonnen, verteilt und bereitgestellt werden?

Inhaltliche Schwerpunkte: Spannung und elektrische Energie, Induktion, Spannungswandlung

Kompetenzschwerpunkte: Schülerinnen und Schüler können

(UF2) zur Lösung physikalischer Probleme zielführend Definitionen, Konzepte sowie funktionale Beziehungen zwischen physikalischen Größen angemessen und begründet auswählen,

(UF4) Zusammenhänge zwischen unterschiedlichen natürlichen bzw. technischen Vorgängen auf der Grundlage eines vernetzten physikalischen Wissens erschließen und aufzeigen.

(E2) kriteriengeleitet beobachten und messen sowie auch komplexe Apparaturen für Beobachtungen und Messungen erläutern und sachgerecht verwenden,

(E5) Daten qualitativ und quantitativ im Hinblick auf Zusammenhänge, Regeln oder mathematisch zu formulierende Gesetzmäßigkeiten analysieren und Ergebnisse verallgemeinern,

(E6) Modelle entwickeln sowie physikalisch-technische Prozesse mithilfe von theoretischen Modellen, mathematischen Modellierungen, Gedankenexperimenten und Simulationen erklären oder vorhersagen,

(K3) physikalische Sachverhalte und Arbeitsergebnisse unter Verwendung situationsangemessener Medien und Darstellungsformen adressatengerecht präsentieren,

(B1) fachliche, wirtschaftlich-politische und ethische Kriterien bei Bewertungen von physikalischen oder technischen Sachverhalten unterscheiden und begründet gewichten,

Inhalt

(Ustd. à 45 min)

Kompetenzen

Die Schülerinnen und Schüler…

Experiment / Medium

Kommentar

Wandlung von mechanischer in elektrische Energie:

Elektromagnetische Induktion

Induktionsspannung

(5 Ustd.)

erläutern am Beispiel derLeiterschaukel das Auftreten einer Induktionsspannung durch die Wirkung der Lorentzkraft auf bewegte Ladungsträger (UF1, E6),

definieren die Spannung als Verhältnis von Energie und Ladung und bestimmen damit Energien bei elektrischen Leitungsvorgängen (UF2),

bestimmen die relative Orientierung von Bewegungsrichtung eines Ladungsträgers, Magnetfeldrichtung und resultierender Kraftwirkung mithilfe einer Drei-Finger-Regel (UF2, E6),

werten Messdaten, die mit einem Oszilloskop bzw. mit einem Messwerterfassungssystem gewonnen wurden, im Hinblick auf Zeiten, Frequenzen und Spannungen aus (E2, E5).

bewegter Leiter im (homogenen) Magnetfeld –
Leiterschaukelversuch

Messung von Spannungen mit diversen Spannungsmessgeräten (nicht nur an der Leiterschaukel)

Gedankenexperimente zur Überführungsarbeit, die an einer Ladung verrichtet wird.

Deduktive Herleitung der Beziehung zwischen U, v und B.

Definition der Spannung und Erläuterung anhand von Beispielen für Energieumwandlungsprozesse bei Ladungstransporten, Anwendungsbeispiele.

Das Entstehen einer Induktionsspannung bei bewegtem Leiter im Magnetfeld wird mit Hilfe der Lorentzkraft erklärt, eine Beziehung zwischen Induktionsspannung, Leitergeschwindigkeit und Stärke des Magnetfeldes wird (deduktiv) hergeleitet.

Die an der Leiterschaukel registrierten (zeitabhängigen) Induktionsspannungen werden mit Hilfe der hergeleiteten Beziehung auf das Zeit-Geschwindigkeit-Gesetz des bewegten Leiters zurückgeführt.

Technisch praktikable Generatoren:

Erzeugung sinusförmiger Wechselspan­nungen

(4 Ustd.)

recherchieren bei vorgegebenen Fragestellungen historische Vorstellungen und Experimente zu Induktionserscheinungen (K2),

erläutern adressatenbezogen Zielsetzungen, Aufbauten und Ergebnisse von Experimenten im Bereich der Elektrodynamik jeweils sprachlich angemessen und verständlich (K3),

Internetquellen, Lehrbücher, Firmeninformationen, Filme und Applets zum Generatorprinzip

Experimente mit drehenden Leiterschleifen in (näherungsweise homogenen) Magnetfeldern, Wechselstromgeneratoren

Hier bietet es sich an, arbeitsteilige Präsentationen auch unter Einbezug von Realexperimenten anfertigen zu lassen.

 

erläutern das Entstehen sinusförmiger Wechselspannungen in Generatoren (E2, E6),

werten Messdaten, die mit einem Oszilloskop bzw. mit einem Messwerterfassungssystem gewonnen wurden, im Hinblick auf Zeiten, Frequenzen und Spannungen aus (E2, E5).

führen Induktionserscheinungen an einer Leiterschleife auf die beiden grundlegenden Ursachen „zeitlich veränderliches Magnetfeld“ bzw. „zeitlich veränderliche (effektive) Fläche“ zurück (UF3, UF4),

Messung und Registrierung von Induktionsspannungen mit Oszilloskop und digitalem Messwerterfassungssystem

Der Zusammenhang zwischen induzierter Spannung und zeitlicher Veränderung der senkrecht vom Magnetfeld durchsetzten Fläche wird „deduktiv“ erschlossen.

Nutzbarmachung elektrischer Energie durch „Transformation“

Transformator

(5 Ustd.)

erläutern adressatenbezogen Zielsetzungen, Aufbauten und Ergebnisse von Experimenten im Bereich der Elektrodynamik jeweils sprachlich angemessen und verständlich (K3),

ermitteln die Übersetzungsverhältnisse von Spannung und Stromstärke beim Transformator (UF1, UF2).

geben Parameter von Transformatoren zur gezielten Veränderung einer elektrischen Wechselspannung an (E4),

werten Messdaten, die mit einem Oszilloskop bzw. mit einem Messwerterfassungssystem gewonnen wurden, im Hinblick auf Zeiten, Frequenzen und Spannungen aus (E2, E5).

führen Induktionserscheinungen an einer Leiterschleife auf die beiden grundlegenden Ursachen „zeitlich veränderliches Magnetfeld“ bzw. „zeitlich veränderliche (effektive) Fläche“ zurück (UF3, UF4),

diverse „Netzteile“ von Elektro-Kleingeräten (mit klassischem Transformator)

Internetquellen, Lehrbücher, Firmeninformationen

Demo-Aufbautransformator mit geeigneten Messgeräten

ruhende Induktionsspule in wechselstromdurchflossener Feldspule – mit Messwerterfassungssystem zur zeitaufgelösten Registrierung der Induktionsspannung und des zeitlichen Verlaufs der Stärke des magnetischen Feldes

Der Transformator wird eingeführt und die Übersetzungsverhältnisse der Spannungen experimentell ermittelt. Dies kann auch durch einen Schülervortrag erfolgen (experimentell und medial gestützt).

Der Zusammenhang zwischen induzierter Spannung und zeitlicher Veränderung der Stärke des magnetischen Feldes wird experimentell im Lehrerversuch erschlossen.

Die registrierten Messdiagramme werden von den SuS eigenständig ausgewertet.

Energieerhaltung

Ohm´sche „Verluste“

(4 Ustd.)

verwenden ein physikalisches Modellexperiment zu Freileitungen, um technologische Prinzipien der Bereitstellung und Weiterleitung von elektrischer Energie zu demonstrieren und zu erklären (K3),

bewerten die Notwendigkeit eines geeigneten Transformierens der Wechselspannung für die effektive Übertragung elektrischer Energie über große Entfernungen (B1),

zeigen den Einfluss und die Anwendung physikalischer Grundlagen in Lebenswelt und Technik am Beispiel der Bereitstellung und Weiterleitung elektrischer Energie auf (UF4),

beurteilen Vor- und Nachteile verschiedener Möglichkeiten zur Übertragung elektrischer Energie über große Entfernungen (B2, B1, B4).

Modellexperiment (z.B. mit Hilfe von Aufbautransformatoren) zur Energieübertragung und zur Bestimmung der „Ohm’schen Verluste“ bei der Übertragung elektrischer Energie bei unterschiedlich hohen Spannungen

Hier bietet sich ein arbeitsteiliges Gruppenpuzzle an, in dem Modellexperimente einbezogen werden.

18 Ustd.

Summe

   


Kontext: Wirbelströme im Alltag

Leitfrage: Wie kann man Wirbelströme technisch nutzen?

Inhaltliche Schwerpunkte: Induktion

Kompetenzschwerpunkte: Schülerinnen und Schüler können

(UF4) Zusammenhänge zwischen unterschiedlichen natürlichen bzw. technischen Vorgängen auf der Grundlage eines vernetzten physikalischen Wissens erschließen und aufzeigen.

(E5) Daten qualitativ und quantitativ im Hinblick auf Zusammenhänge, Regeln oder mathematisch zu formulierende Gesetzmäßigkeiten analysieren und Ergebnisse verallgemeinern,

(B1) fachliche, wirtschaftlich-politische und ethische Kriterien bei Bewertungen von physikalischen oder technischen Sachverhalten unterscheiden und begründet gewichten,

Inhalt

(Ustd. à 45 min)

Kompetenzen

Die Schülerinnen und Schüler…

Experiment / Medium

Kommentar

Lenz´sche Regel

(4 Ustd.)

erläutern anhand des Thomson´schen Ringversuchs die Lenz´sche Regel (E5, UF4),

bewerten bei technischen Prozessen das Auftreten erwünschter bzw. nicht erwünschter Wirbelströme (B1),

Freihandexperiment: Untersuchung der Relativbewegung eines aufgehängten Metallrings und eines starken Stabmagneten

Thomson’scher Ringversuch

diverse technische und spielerische Anwendungen, z.B. Dämpfungselement an einer Präzisionswaage, Wirbelstrombremse, „fallender Magnet“ im Alu-Rohr.

Ausgehend von kognitiven Konflikten bei den Ringversuchen wird die Lenz´sche Regel erarbeitet

Erarbeitung von Anwendungsbeispielen zur Lenz’schen Regel (z.B. Wirbelstrombremse bei Fahrzeugen oder an der Kreissäge)

4 Ustd.

Summe

   


Inhaltsfeld: Strahlung und Materie (GK) Q2

Kontext: Erforschung des Mikro- und Makrokosmos

Leitfrage: Wie gewinnt man Informationen zum Aufbau der Materie?

Inhaltliche Schwerpunkte: Energiequantelung der Atomhülle, Spektrum der elektromagnetischen Strahlung

Kompetenzschwerpunkte: Schülerinnen und Schüler können

(UF1) physikalische Phänomene und Zusammenhänge unter Verwendung von Theorien, übergeordneten Prinzipien / Gesetzen und Basiskonzepten beschreiben und erläutern,

(E5) Daten qualitativ und quantitativ im Hinblick auf Zusammenhänge, Regeln oder mathematisch zu formulierende Gesetzmäßigkeiten analysieren und Ergebnisse verallgemeinern,

(E2) kriteriengeleitet beobachten und messen sowie auch komplexe Apparaturen für Beobachtungen und Messungen erläutern und sachgerecht verwenden,

Inhalt

(Ustd. à 45 min)

Kompetenzen

Die Schülerinnen und Schüler…

Experiment / Medium

Kommentar

Kern-Hülle-Modell

(2 Ustd.)

erläutern, vergleichen und beurteilen Modelle zur Struktur von Atomen und Materiebausteinen (E6, UF3, B4),

Literaturrecherche, Schulbuch

Ausgewählte Beispiele für Atommodelle

Energieniveaus der Atomhülle

(2 Ustd.)

erklären die Energie absorbierter und emittierter Photonen mit den unterschiedlichen Energieniveaus in der Atomhülle (UF1, E6),

Erzeugung von Linienspektren mithilfevonGasentladungslampen

Deutung derLinienspektren

Quantenhafte Emission und Absorption von Photonen

(3 Ustd.)

erläutern die Bedeutung von Flammenfärbung und Linienspektren bzw. Spektralanalyse, die Ergebnisse des Franck-Hertz-Versuches sowie die charakteristischen Röntgenspektren für die Entwicklung von Modellen der diskreten Energiezustände von Elektronen in der Atomhülle (E2, E5, E6, E7),

Franck-Hertz-Versuch

Es kann das Bohr’sche Atommodell angesprochen werden (ohne Rechnungen)

Röntgenstrahlung

(3 Ustd.)

erläutern die Bedeutung von Flammenfärbung und Linienspektren bzw. Spektralanalyse, die Ergebnisse des Franck-Hertz-Versuches sowie die charakteristischen Röntgenspektren für die Entwicklung von Modellen der diskreten Energiezustände von Elektronen in der Atomhülle (E2, E5, E6, E7),

Aufnahme von Röntgenspektren im Computermodell.

Im Zuge der „Elemente der Quantenphysik“ kann die Röntgenstrahlung bereits als Umkehrung des Photo­effekts bearbeitet werden

Mögliche Ergänzungen: Bremsspektrum mit h-Bestimmung / Bragg-Reflexion

Sternspektren und Fraunhoferlinien

(3 Ustd.)

interpretieren Spektraltafeln des Sonnenspektrums im Hinblick auf die in der Sonnen- und Erdatmosphäre vorhandenen Stoffe (K3, K1),

erklären Sternspektren und Fraunhoferlinien (UF1, E5, K2),

stellen dar, wie mit spektroskopischen Methoden Informationen über die Entstehung und den Aufbau des Weltalls gewonnen werden können (E2, K1),

Flammenfärbung

Darstellung des Sonnenspektrums mit seinen Fraunhoferlinien

Spektralanalyse

u. a. Durchstrahlung einer Na-Flamme mit Na- und Hg-Licht (Schattenbildung)

Evtl. Selbstbau mit Spektroskopbausatz von Astromedia

13 Ustd.

Summe

   


Kontext: Mensch und Strahlung

Leitfrage: Wie wirkt Strahlung auf den Menschen?

Inhaltliche Schwerpunkte: Kernumwandlungen, Ionisierende Strahlung, Spektrum der elektromagnetischen Strahlung

Kompetenzschwerpunkte: Schülerinnen und Schüler können

(UF1) physikalische Phänomene und Zusammenhänge unter Verwendung von Theorien, übergeordneten Prinzipien / Gesetzen und Basiskonzepten beschreiben und erläutern,

(B3) an Beispielen von Konfliktsituationen mit physikalisch-technischen Hintergründen kontroverse Ziele und Interessen sowie die Folgen wissenschaftlicher Forschung aufzeigen und bewerten,

(B4) begründet die Möglichkeiten und Grenzen physikalischer Problemlösungen und Sichtweisen bei innerfachlichen, naturwissenschaftlichen und gesellschaftlichen Fragestellungen bewerten.

Inhalt

(Ustd. à 45 min)

Kompetenzen

Die Schülerinnen und Schüler…

Experiment / Medium

Kommentar

Strahlungsarten

(2 Ustd.)

unterscheiden a-, b-, g-Strahlung und Röntgenstrahlung sowie Neutronen- und Schwerionenstrahlung (UF3),

erläutern den Nachweis unterschiedlicher Arten ionisierender Strahlung mithilfe von Absorptionsexperimenten (E4, E5),

bewerten an ausgewählten Beispielen Rollen und Beiträge von Physikerinnen und Physikern zu Erkenntnissen in der Kern- und Elementarteilchenphysik (B1, B3),

Recherche

Absorptionsexperimente zu
a-, b-, g-Strahlung

Wiederholung und Vertiefung aus der Sek. I

Elementumwandlung

(1 Ustd.)

erläutern den Begriff Radioaktivität und beschreiben zugehörige Kernumwandlungsprozesse (UF1, K1),

Nuklidkarte

 

Detektoren

(3 Ustd.)

erläutern den Aufbau und die Funktionsweise von Nachweisgeräten für ionisierende Strahlung (Geiger-Müller-Zählrohr) und bestimmen Halbwertszeiten und Zählraten (UF1, E2),

Geiger-Müller-Zählrohr

An dieser Stelle können Hinweise auf Halbleiterdetektoren gegeben werden.

Biologische Wirkung ionisierender Strahlung und Energieaufnahme im menschlichen Gewebe

Dosimetrie

(3 Ustd.)

beschreiben Wirkungen von ionisierender und elektromagnetischer Strahlung auf Materie und lebende Organismen (UF1),

bereiten Informationen über wesentliche biologisch-medizinische Anwendungen und Wirkungen von ionisierender Strahlung für unterschiedliche Adressaten auf (K2, K3, B3, B4),

begründen in einfachen Modellen wesentliche biologisch-medizinische Wirkungen von ionisierender Strahlung mit deren typischen physikalischen Eigenschaften (E6, UF4),

erläutern das Vorkommen künstlicher und natürlicher Strahlung, ordnen deren Wirkung auf den Menschen mithilfe einfacher dosimetrischer Begriffe ein und bewerten Schutzmaßnahmen im Hinblick auf die Strahlenbelastungen des Menschen im Alltag (B1, K2).

bewerten Gefahren und Nutzen der Anwendung physikalischer Prozesse, u. a. von ionisierender Strahlung, auf der Basis medizinischer, gesellschaftlicher und wirtschaftlicher Gegebenheiten (B3, B4)

bewerten Gefahren und Nutzen der Anwendung ionisierender Strahlung unter Abwägung unterschiedlicher Kriterien (B3, B4),

ggf. Einsatz eines Films / eines Videos

Sinnvolle Beispiele sind die Nutzung von ionisierender Strahlung zur Diagnose und zur Therapie bei Krankheiten des Menschen (von Lebewesen) sowie zur Kontrolle technische Anlagen.

Erläuterung von einfachen dosimetrischen Begriffe: Aktivität, Energiedosis, Äquivalentdosis

9 Ustd.

Summe

   

Kontext: Forschung am CERN und DESY

Leitfrage: Was sind die kleinsten Bausteine der Materie?

Inhaltliche Schwerpunkte: Standardmodell der Elementarteilchen

Kompetenzschwerpunkte: Schülerinnen und Schüler können

(UF3) physikalische Sachverhalte und Erkenntnisse nach fachlichen Kriterien ordnen und strukturieren,

(E6) Modelle entwickeln sowie physikalisch-technische Prozesse mithilfe von theoretischen Modellen, mathematischen Modellierungen, Gedankenexperimenten und Simulationen erklären oder vorhersagen,

Inhalt

(Ustd. à 45 min)

Kompetenzen

Die Schülerinnen und Schüler…

Experiment / Medium

Kommentar

Kernbausteine und Elementarteilchen

(4 Ustd.)

erläutern mithilfe des aktuellen Standardmodells den Aufbau der Kernbausteine und erklären mit ihm Phänomene der Kernphysik (UF3, E6),

erklären an einfachen Beispielen Teilchenumwandlungen im Standardmodell (UF1).

recherchieren in Fachzeitschriften, Zeitungsartikeln bzw. Veröffentlichungen von Forschungseinrichtungen zu ausgewählten aktuellen Entwicklungen in der Elementarteilchenphysik (K2).

In diesem Bereich sind i. d. R. keine Realexperimente für Schulen möglich.

Es z.B. kann auf Internetseiten des CERN und DESY zurückgegriffen werden.

Mögliche Schwerpunktsetzung:

Paarerzeugung, Paarvernichtung,

(Virtuelles) Photon als Austauschteilchen der elektromagnetischen Wechselwirkung

Konzept der Austauschteilchen vs. Feldkonzept

(2 Ustd.)

vergleichen in Grundprinzipien das Modell des Photons als Austauschteilchen für die elektromagnetische Wechselwirkung exemplarisch für fundamentale Wechselwirkungen mit dem Modell des Feldes (E6).

Lehrbuch, Animationen

Veranschaulichung der Austauschwechselwirkung mithilfe geeigneter mechanischer Modelle, auch Problematik dieser Modelle thematisieren

6 Ustd.

Summe

   


Inhaltsfeld: Relativität von Raum und Zeit (GK)

 

Kontext: Navigationssysteme

Leitfrage: Welchen Einfluss hat Bewegung auf den Ablauf der Zeit?

Inhaltliche Schwerpunkte: Konstanz der Lichtgeschwindigkeit, Zeitdilatation

Kompetenzschwerpunkte: Schülerinnen und Schüler können

(UF1) physikalische Phänomene und Zusammenhänge unter Verwendung von Theorien, übergeordneten Prinzipien / Gesetzen und Basiskonzepten beschreiben und erläutern,

(E6) Modelle entwickeln sowie physikalisch-technische Prozesse mithilfe von theoretischen Modellen, mathematischen Modellierungen, Gedankenexperimenten und Simulationen erklären oder vorhersagen,

Inhalt

(Ustd. à 45 min)

Kompetenzen

Die Schülerinnen und Schüler…

Experiment / Medium

Kommentar

Relativität der Zeit

(5 Ustd.)

interpretieren das Michelson-Morley-Experiment als ein Indiz für die Konstanz der Lichtgeschwindigkeit (UF4),

erklären anschaulich mit der Lichtuhr grundlegende Prinzipien der speziellen Relativitätstheorie und ermitteln quantitativ die Formel für die Zeitdilatation (E6, E7),

erläutern qualitativ den Myonenzerfalls in der Erdatmosphäre als experimentellen Beleg für die von der Relativitätstheorie vorhergesagte Zeitdilatation (E5, UF1).

erläutern die relativistische Längenkontraktion über eine Plausibilitätsbetrachtung (K3),

begründen mit der Lichtgeschwindigkeit als Obergrenze für Geschwindigkeiten von Objekten, dass eine additive Überlagerung von Geschwindig­keiten nur für „kleine“ Geschwindigkeiten gilt (UF2),

erläutern die Bedeutung der Konstanz der Lichtgeschwindigkeit als Ausgangspunkt für die Entwicklung der speziellen Relativitätstheorie (UF1),

Experiment von Michelson und Morley (Computersimulation)

Lichtuhr (Gedankenexperiment / Computersimulation)

Myonenzerfall (Internet)

Ausgangsproblem: Exaktheit der Positionsbestimmung mit Navigationssystemen

Begründung der Hypothese von der Konstanz der Lichtgeschwindigkeit mit dem Ausgang des Michelson-Morley-Experiments

Herleitung der Formel für die Zeitdilatation am Beispiel einer „bewegten Lichtuhr“.

Der Myonenzerfall in der Erdatmosphäre dient als experimentelle Bestätigung der Zeitdilatation. Betrachtet man das Bezugssystem der Myonen als ruhend, kann die Längenkontraktion der Atmosphäre plausibel gemacht werden.

Die Formel für die Längenkontraktion wird angegeben.

5 Ustd.

Summe

   

Kontext: Teilchenbeschleuniger

Leitfrage: Ist die Masse bewegter Teilchen konstant?

Inhaltliche Schwerpunkte: Veränderlichkeit der Masse, Energie-Masse Äquivalenz

Kompetenzschwerpunkte: Schülerinnen und Schüler können

(UF4) Zusammenhänge zwischen unterschiedlichen natürlichen bzw. technischen Vorgängen auf der Grundlage eines vernetzten physikalischen Wissens erschließen und aufzeigen.

(B1) fachliche, wirtschaftlich-politische und ethische Kriterien bei Bewertungen von physikalischen oder technischen Sachverhalten unterscheiden und begründet gewichten,

Inhalt

(Ustd. à 45 min)

Kompetenzen

Die Schülerinnen und Schüler…

Experiment / Medium

Kommentar

„Schnelle“ Ladungs­träger in E- und B-Feldern

(2 Ustd.)

erläutern die Funktionsweise eines Zyklotrons und argumentieren zu den Grenzen einer Verwendung zur Beschleunigung von Ladungsträgern bei Berücksichtigung relativistischer Effekte (K4, UF4),

Zyklotron (in einer Simulation mit und ohne Massenveränderlichkeit)

Der Einfluss der Massenzunahme wird in der Simulation durch das „Aus-dem-Takt-Geraten“ eines beschleunigten Teilchens im Zyklotron ohne Rechnung veranschaulicht.

 

Ruhemasse und dynamische Masse

(4 Ustd.)

erläutern die Energie-Masse Äquivalenz (UF1).

zeigen die Bedeutung der Beziehung E=mc2 für die Kernspaltung und -fusion auf (B1, B3)

Film / Video

Die Formeln für die dynamische Masse und E=mc2 werden als deduktiv herleitbar angegeben.

Erzeugung und Vernichtung von Teilchen,

Hier können Texte und Filme zu Hiroshima und Nagasaki eingesetzt werden.

 

6 Ustd.

Summe

     

Kontext: Das heutige Weltbild der Physik

Leitfrage: Welchen Beitrag liefert die Relativitätstheorie zur Erklärung unserer Welt?

Inhaltliche Schwerpunkte: Konstanz der Lichtgeschwindigkeit, Zeitdilatation, Veränderlichkeit der Masse, Energie-Masse Äquivalenz

Kompetenzschwerpunkte: Schülerinnen und Schüler können

(E7) naturwissenschaftliches Arbeiten reflektieren sowie Veränderungen im Weltbild und in Denk- und Arbeitsweisen in ihrer historischen und kulturellen Entwicklung darstellen.

(K3) physikalische Sachverhalte und Arbeitsergebnisse unter Verwendung situationsangemessener Medien und Darstellungsformen adressatengerecht präsentieren,

Inhalt

(Ustd. à 45 min)

Kompetenzen

Die Schülerinnen und Schüler…

Experiment / Medium

Kommentar

Gegenseitige Bedingung von Raum und Zeit

(2 Ustd.)

diskutieren die Bedeutung von Schlüsselexperimenten bei physikalischen Paradigmenwechseln an Beispielen aus der Relativitätstheorie (B4, E7),

beschreiben Konsequenzen der relativistischen Einflüsse auf Raum und Zeit anhand anschaulicher und einfacher Abbildungen (K3)

Lehrbuch, Film / Video

 

2 Ustd.

Summe

   


2.1.2.3            Qualifikationsphase: Leistungskurs

Inhaltsfeld: Relativitätstheorie (LK)

Kontext: Satellitennavigation – Zeitmessung ist nicht absolut

Leitfrage: Welchen Einfluss hat Bewegung auf den Ablauf der Zeit?

Inhaltliche Schwerpunkte: Konstanz der Lichtgeschwindigkeit, Problem der Gleichzeitigkeit

Kompetenzschwerpunkte: Schülerinnen und Schüler können

(UF2) zur Lösung physikalischer Probleme zielführend Definitionen, Konzepte sowie funktionale Beziehungen zwischen physikalischen Größen angemessen und begründet auswählen,

(E6) Modelle entwickeln sowie physikalisch-technische Prozesse mithilfe von theoretischen Modellen, mathematischen Modellierungen, Gedankenexperimenten und Simulationen erklären oder vorhersagen,

Inhalt

(Ustd. à 45 min)

Kompetenzen

Die Schülerinnen und Schüler…

Experiment / Medium

Kommentar

Konstanz der Licht­geschwindigkeit und Problem der Gleichzei­tigkeit

Inertialsysteme

Relativität der Gleichzei­tigkeit

(4 Ustd.)

begründen mit dem Ausgang des Michelson-Morley-Experiments die Konstanz der Lichtgeschwindigkeit (UF4, E5, E6),

erläutern das Problem der relativen Gleichzeitigkeit mit in zwei verschiedenen Inertialsystemen jeweils synchronisierten Uhren (UF2),

begründen mit der Lichtgeschwindigkeit als Obergrenze für Geschwindigkeiten von Objekten Auswirkungen auf die additive Überlagerung von Geschwindig­keiten (UF2).

Experiment von
Michelson und Morley (Com­putersimulation)

Relativität der Gleichzeitigkeit
(Video / Film)

Ausgangsproblem: Exaktheit der Posi­tionsbestimmung mit Navigations­systemen

Begründung der Hypothese von der Konstanz der Lichtgeschwindigkeit mit dem Ausgang des Michelson- und Morley-Experiments (Com­putersimulation).

Das Additionstheorem für relativis­tische Geschwindigkeiten kann ergänzend ohne Herleitung angegeben werden.

4 Ustd.

Summe

   

Kontext: Höhenstrahlung

Leitfrage: Warum erreichen Myonen aus der oberen Atmo-sphäre die Erdoberfläche?

Inhaltliche Schwerpunkte: Zeitdilatation und Längenkontraktion

Kompetenzschwerpunkte: Schülerinnen und Schüler können

(E5) Daten qualitativ und quantitativ im Hinblick auf Zusammenhänge, Regeln oder mathematisch zu formulierende Gesetzmäßigkeiten analysieren und Ergebnisse verallgemeinern,

(K3) physikalische Sachverhalte und Arbeitsergebnisse unter Verwendung situationsangemessener Medien und Darstellungsformen adressatengerecht präsentieren,

Inhalt

(Ustd. à 45 min)

Kompetenzen

Die Schülerinnen und Schüler…

Experiment / Medium

Kommentar

Zeitdilatation und relati­vistischer Faktor

(2 Ustd., zusätzlich Exkursion)

leiten mithilfe der Konstanz der Lichtgeschwindigkeit und des Modells Lichtuhr quantitativ die Formel für die Zeitdilatation her (E5),

reflektieren die Nützlichkeit des Modells Lichtuhr hinsichtlich der Herleitung des relativistischen Faktors (E7).

erläutern die Bedeutung der Konstanz der Lichtgeschwindigkeit als Ausgangspunkt für die Entwicklung der speziellen Relativitätstheorie (UF1)

Lichtuhr (Gedankenexperiment / Computersimulation)

Myonenzerfall (Experimente­pool der Universität – ggfs. Exkursion an eine Universität)

Mit der Lichtuhr wird der relativistische Faktor g hergeleitet.

Der Myonenzerfall in der Erdatmo­sphäre dient als eine experi­mentelle Bestätigung der Zeitdilata­tion.

Längenkontraktion

(2 Ustd.)

begründen den Ansatz zur Herleitung der Längenkontraktion (E6),

erläutern die relativistischen Phänomene Zeitdilatation und Längenkontraktion anhand des Nachweises von in der oberen Erdatmosphäre entstehenden Myonen (UF1),

beschreiben Konsequenzen der relativistischen Einflüsse auf Raum und Zeit anhand anschaulicher und einfacher Abbildungen (K3),

Myonenzerfall (Experimente­pool der Universität – ggfs. Exkur­sion an eine Universität) – s. o.

Der Myonenzerfall dient als experi­mentelle Bestätigung der Längen­kontraktion (im Vergleich zur Zeitdila­tation) – s. o.

Herleitung der Formel für die Längenkontraktion

4 Ustd.

Summe

   


Kontext: Teilchenbeschleuniger – Warum Teilchen aus dem Takt geraten

Leitfrage: Ist die Masse bewegter Teilchen konstant?

Inhaltliche Schwerpunkte: Relativistische Massenzunahme, Energie-Masse-Beziehung

Kompetenzschwerpunkte: Schülerinnen und Schüler können

(UF4) Zusammenhänge zwischen unterschiedlichen natürlichen bzw. technischen Vorgängen auf der Grundlage eines vernetzten physikalischen Wissens erschließen und aufzeigen.

(B1) fachliche, wirtschaftlich-politische und ethische Kriterien bei Bewertungen von physikalischen oder technischen Sachverhalten unterscheiden und begründet gewichten,

Inhalt

(Ustd. à 45 min)

Kompetenzen

Die Schülerinnen und Schüler…

Experiment / Medium

Kommentar

„Schnelle“ Ladungs­träger in E- und B-Fel­dern

(4 Ustd.)

erläutern auf der Grundlage historischer Dokumente ein Experiment (Bertozzi-Versuch) zum Nachweis der relativistischen Massenzunahme (K2, K3),

Bertozzi-Experiment
(anhand von Literatur)

Hier würde sich eine Schülerpräsentation des Bertozzi-Experiments anbieten.

Der Einfluss der Massenzunahme wird in einer Simulation durch das „Aus-dem-Takt-Geraten“ eines beschleunigten Teilchens im Zyklotron ohne Rechnung veranschaulicht.

Die Formel für die dynamische Masse wird als deduktiv herleitbar angegeben.

Ruhemasse und dynami­sche Masse

(2 Ustd.)

erläutern die Energie-Masse-Beziehung (UF1)

berechnen die relativistische kinetische Energie von Teilchen mithilfe der Energie-Masse-Beziehung (UF2)

 

Die Differenz aus dynamischer Masse und Ruhemasse wird als Maß für die kinetische Energie eines Körpers identifiziert.

Bindungsenergie im Atomkern

Annihilation

(2 Ustd.)

beschreiben die Bedeutung der Energie-Masse-Äquivalenz hinsichtlich der Annihilation von Teilchen und Antiteilchen (UF4),

bestimmen und bewerten den bei der Annihilation von Teilchen und Antiteilchen frei werdenden Energiebetrag (E7, B1),

beurteilen die Bedeutung der Beziehung E=mc2 für Erforschung und technische Nutzung von Kernspaltung und Kernfusion (B1, B3),

Historische Aufnahme von Teil­chenbahnen

Interpretation des Zusammenhangs zwischen Bindungsenergie pro Nukleon und der Kernspaltungs- bzw. Kernfusionsenergie bei den entspre­chenden Prozessen.

Es können Filme zu Hiroshima und Nagasaki eingesetzt werden.

Erzeugung und Vernichtung von Teil­chen

8 Ustd.

Summe

   

Kontext: Satellitennavigation – Zeitmessung unter dem Einfluss von Geschwindigkeit und Gravitation

Leitfrage: Beeinflusst Gravitation den Ablauf der Zeit?

Inhaltliche Schwerpunkte: Der Einfluss der Gravitation auf die Zeitmessung

Kompetenzschwerpunkte: Schülerinnen und Schüler können

(K3) physikalische Sachverhalte und Arbeitsergebnisse unter Verwendung situationsangemessener Medien und Darstellungsformen adressatengerecht präsentieren,

Inhalt

(Ustd. à 45 min)

Kompetenzen

Die Schülerinnen und Schüler…

Experiment / Medium

Kommentar

Gravitation und Zeitmes­sung

(2 Ustd.)

beschreiben qualitativ den Einfluss der Gravitation auf die Zeitmessung (UF4)

Der Gang zweier Atomuhren in unterschiedlicher Höhe in einem Raum (früheres Experi­mente der PTB Braunschweig)

Flug von Atomuhren um die Erde (Video)

Dieser Unterrichtsabschnitt soll ledig­lich einen ersten – qualitativ orientier­ten – Einblick in die Äquivalenz von Gravitation und gleichmäßig beschleu­nigten Bezugssystemen geben.

Elemente des Kontextes Satelliten­navigation können genutzt werden, um sowohl die Zeitdilatation (infolge der unterschiedlichen Geschwindigkeiten der Satelliten) als auch die Gravita­tionswirkung (infolge ihres Aufenthalts an verschiedenen Orten im Gravita­tionsfeld der Erde) zu verdeutlichen.

Die Gleichheit von träger und schwerer Masse (im Rahmen der heutigen Messgenauigkeit)

(2 Ustd.)

veranschaulichen mithilfe eines einfachen gegenständlichen Modells den durch die Einwirkung von massebehafteten Körpern hervorgerufenen Einfluss der Gravitation auf die Zeitmessung sowie die „Krümmung des Raums“ (K3).

Einsteins Fahrstuhl-Gedanken­experiment

Das Zwillingsparadoxon (mit Beschleunigungsphasen und Phasen der gleichförmigen Bewegung

Film / Video

An dieser Stelle könnte eine Schülerpräsentation erfolgen (mithilfe der Nutzung von Informationen und Animationen aus dem Internet)

4 Ustd.

Summe

   

Kontext: Das heutige Weltbild

Leitfrage: Welchen Beitrag liefert die Relativitätstheorie zur Erklärung unserer Welt?

Inhaltliche Schwerpunkte: Konstanz der Lichtgeschwindigkeit, Problem der Gleichzeitigkeit, Zeitdilatation und Längenkontraktion, Relativistische Massenzunahme, Energie-Masse-Beziehung, Der Einfluss der Gravitation auf die Zeitmessung

Kompetenzschwerpunkte: Schülerinnen und Schüler können

(B4) begründet die Möglichkeiten und Grenzen physikalischer Problemlösungen und Sichtweisen bei innerfachlichen, naturwissenschaftlichen und gesellschaftlichen Fragestellungen bewerten.

Inhalt

(Ustd. à 45 min)

Kompetenzen

Die Schülerinnen und Schüler…

Experiment / Medium

Kommentar

Gegenseitige Bedingung von Raum und Zeit

(2 Ustd.)

bewerten Auswirkungen der Relativitätstheorie auf die Veränderung des physikalischen Weltbilds (B4).

Lehrbuchtexte, Internetrecherche

Ggf. Schülervortrag

2 Ustd.

Summe

   


Inhaltsfeld: Elektrik (LK)

 

Kontext: Untersuchung von Elektronen

Leitfrage: Wie können physikalische Eigenschaften wie die Ladung und die Masse eines Elektrons gemessen werden?

Inhaltliche Schwerpunkte: Eigenschaften elektrischer Ladungen und ihrer Felder,Bewegung von Ladungsträgern in elektrischen und magnetischen Feldern

Kompetenzschwerpunkte: Schülerinnen und Schüler können

(UF1) physikalische Phänomene und Zusammenhänge unter Verwendung von Theorien, übergeordneten Prinzipien / Gesetzen und Basiskonzepten beschreiben und erläutern,

(UF2) zur Lösung physikalischer Probleme zielführend Definitionen, Konzepte sowie funktionale Beziehungen zwischen physikalischen Größen angemessen und begründet auswählen,

(E6) Modelle entwickeln sowie physikalisch-technische Prozesse mithilfe von theoretischen Modellen, mathematischen Modellierungen, Gedankenexperimenten und Simulationen erklären oder vorhersagen,

(K3) physikalische Sachverhalte und Arbeitsergebnisse unter Verwendung situationsangemessener Medien und Darstellungsformen adressatengerecht präsentieren,

(B1) fachliche, wirtschaftlich-politische und ethische Kriterien bei Bewertungen von physikalischen oder technischen Sachverhalten unterscheiden und begründet gewichten,

(B4) begründet die Möglichkeiten und Grenzen physikalischer Problemlösungen und Sichtweisen bei innerfachlichen, naturwissenschaftlichen und gesellschaftlichen Fragestellungen bewerten.

Inhalt

(Ustd. à 45 min)

Kompetenzen

Die Schülerinnen und Schüler…

Experiment / Medium

Kommentar

Grundlagen:

Ladungstrennung,

Ladungsträger

(4 Ustd.)

erklären elektrostatische Phänomene und Influenz mithilfe grundlegender Eigenschaften elektrischer Ladungen (UF2, E6),

einfache Versuche zur Reibungselektrizität –   Anziehung / Abstoßung,

halbquantitative Versuche mit Hilfe eines Elektrometerverstärkers:
Zwei aneinander geriebene Kunststoffstäbe aus unterschiedlichen Materialien tragen betragsmäßig gleiche, aber entgegengesetzte Ladungen,
Influenzversuche

An dieser Stelle sollte ein Rückgriff auf die S I erfolgen.

Das Elektron soll als (ein) Träger der negativen Ladung benannt und seine Eigenschaften untersucht werden.

Bestimmung der Elementarladung:

elektrische Felder, Feldlinien

potentielle Energie im elektrischen Feld, Spannung

Kondensator

Elementarladung

(10 Ustd.)

beschreiben Eigenschaften und Wirkungen homogener elektrischer und magnetischer Felder und erläutern die Definitionsgleichungen der entsprechenden Feldstärken (UF2, UF1),

erläutern und veranschaulichen die Aussagen, Idealisierungen und Grenzen von Feldlinienmodellen, nutzen Feldlinienmodelle zur Veranschaulichung typischer Felder und interpretieren Feldlinienbilder (K3, E6, B4),

Skizzen zum prinzipiellen Aufbau des Millikanversuchs,
realer Versuchsaufbau oder entsprechende Medien
(z. B: RCL (remote control laboratory),

einfache Versuche und visuelle Medien zur Veranschaulichung elektrischer Felder im Feldlinienmodell,

Plattenkondensator (homogenes E-Feld),

Die Versuchsidee „eines“ Millikanversuchs wird erarbeitet.

Der Begriff des elektrischen Feldes und das Feldlinienmodell werden eingeführt.

Die elektrische Feldstärke in einem Punkt eines elektrischen Feldes, der Begriff „homogenes Feld“ und die Spannung werden definiert.

 

leiten physikalische Gesetze (u.a. die im homogenen elektrischen Feld gültige Beziehung zwischen Spannung und Feldstärke und den Term für die Lorentzkraft) aus geeigneten Definitionen und bekannten Gesetzen deduktiv her (E6, UF2),

entscheiden für Problemstellungen aus der Elektrik, ob ein deduktives oder ein experimentelles Vorgehen sinnvoller ist (B4, UF2, E1),

evtl. Apparatur zur Messung der Feldstärke gemäß der Definition,

Spannungsmessung am Plattenkondensator,

Bestimmung der Elementarladung mit dem Millikanversuch

Zusammenhang zwischen E und U im homogenen Feld

Bestimmung der Elementarladung mit Diskussion der Messgenauigkeit

An dieser Stelle sollten Übungsaufgaben erfolgen, z.B. auch zum Coulomb’schen Gesetz. Dieses kann auch nur per Plausibilitätsbetrachtung eingeführt werden.

Bestimmung der Masse eines Elektrons:

magnetische Felder, Feldlinien,

potentielle Energie im elektrischen Feld,
Energie bewegter Ladungsträger,

Elektronenmasse

(10 Ustd.)

erläutern an Beispielen den Stellenwert experimenteller Verfahren bei der Definition physikalischer Größen (elektrische und magnetische Feldstärke) und geben Kriterien zu deren Beurteilung an (z.B. Genauigkeit, Reproduzierbarkeit, Unabhängigkeit von Ort und Zeit) (B1, B4),

treffen im Bereich Elektrik Entscheidungen für die Auswahl von Messgeräten (Empfindlichkeit, Genauigkeit, Auflösung und Messrate) im Hinblick auf eine vorgegebene Problemstellung (B1),

beschreiben qualitativ die Erzeugung eines Elektronenstrahls in einer Elektronenstrahlröhre (UF1, K3),

ermitteln die Geschwindigkeitsänderung eines Ladungsträgers nach Durchlaufen einer Spannung (auch relativistisch) (UF2, UF4, B1),

Fadenstrahlrohr (zunächst) zur Erarbeitung der Versuchsidee,

(z.B.) Stromwaage zur Demonstration der Kraftwirkung auf stromdurchflossene Leiter im Magnetfeld sowie zur Veranschaulichung der Definition der magnetischen Feldstärke,

Versuche mit z.B. Oszilloskop, Fadenstrahlrohr, altem (Monochrom-) Röhrenmonitor o. ä. zur Demonstration der Lorentzkraft,

Fadenstrahlrohr zur e/m – Bestimmung (das Problem der Messung der magnetischen Feldstärke wird ausgelagert.)

Die Frage nach der Masse eines Elektrons führt zu weiteren Überlegungen.  

Als Versuchsidee wird (evtl. in Anlehnung an astronomischen Berechnungen in der EF) die Auswertung der Daten einer erzwungenen Kreisbewegung des Teilchens erarbeitet.

Dazu wird der Begriff des magnetischen Feldes eingeführt sowie die Veranschaulichung magnetischer Felder (inkl. Feldlinienmodell) erarbeitet.

Definition der magnetischen Feldstärke, Definition des homogenen Magnetfeldes,

Kraft auf stromdurchflossene Leiter im Magnetfeld, Herleitung der Formel für die Lorentzkraft,

 

erläutern den Feldbegriff und zeigen dabei Gemeinsamkeiten und Unterschiede zwischen Gravitationsfeld, elektrischem und magnetischem Feld auf (UF3, E6),

entscheiden für Problemstellungen aus der Elektrik, ob ein deduktives oder ein experimentelles Vorgehen sinnvoller ist (B4, UF2, E1),

erläutern und veranschaulichen die Aussagen, Idealisierungen und Grenzen von Feldlinienmodellen, nutzen Feldlinienmodelle zur Veranschaulichung typischer Felder und interpretieren Feldlinienbilder (K3, E6, B4),

bestimmen die relative Orientierung von Bewegungsrichtung eines Ladungsträgers, Magnetfeldrichtung und resultierender Kraftwirkung mithilfe einer Drei-Finger-Regel (UF2, E6),

leiten physikalische Gesetze (Term für die Lorentzkraft) aus geeigneten Definitionen und bekannten Gesetzen deduktiv her (E6, UF2),

beschreiben qualitativ und quantitativ die Bewegung von Ladungsträgern in homogenen elektrischen und magnetischen Feldern sowie in gekreuzten Feldern (Wien-Filter, Hall-Effekt) (E1, E2, E3, E4, E5 UF1, UF4),

schließen aus spezifischen Bahnkurvendaten bei der e/m-Bestimmung und beim Massenspektrometer auf wirkende Kräfte sowie Eigenschaften von Feldern und bewegten Ladungsträgern (E5, UF2),

 

Ein Verfahren zur Beschleunigung der Elektronen sowie zur Bestimmung ihrer Geschwindigkeit wird erarbeitet.

24 Ustd.

Summe

   


Kontext: Aufbau und Funktionsweise wichtiger Versuchs- und Messapparaturen

Leitfrage: Wie und warum werden physikalische Größen meistens elektrisch erfasst und wie werden sie verarbeitet?

Inhaltliche Schwerpunkte: Eigenschaften elektrischer Ladungen und ihrer Felder ,Bewegung von Ladungsträgern in elektrischen und magnetischen Feldern

Kompetenzschwerpunkte: Schülerinnen und Schüler können

(UF2) zur Lösung physikalischer Probleme zielführend Definitionen, Konzepte sowie funktionale Beziehungen zwischen physikalischen Größen angemessen und begründet auswählen,

(UF4) Zusammenhänge zwischen unterschiedlichen natürlichen bzw. technischen Vorgängen auf der Grundlage eines vernetzten physikalischen Wissens erschließen und aufzeigen.

(E1) in unterschiedlichen Kontexten physikalische Probleme identifizieren, analysieren und in Form physikalischer Fragestellungen präzisieren,

(E5) Daten qualitativ und quantitativ im Hinblick auf Zusammenhänge, Regeln oder mathematisch zu formulierende Gesetzmäßigkeiten analysieren und Ergebnisse verallgemeinern,

(E6) Modelle entwickeln sowie physikalisch-technische Prozesse mithilfe von theoretischen Modellen, mathematischen Modellierungen, Gedankenexperimenten und Simulationen erklären oder vorhersagen,

(K3) physikalische Sachverhalte und Arbeitsergebnisse unter Verwendung situationsangemessener Medien und Darstellungsformen adressatengerecht präsentieren,

(B1) fachliche, wirtschaftlich-politische und ethische Kriterien bei Bewertungen von physikalischen oder technischen Sachverhalten unterscheiden und begründet gewichten,

(B4) begründet die Möglichkeiten und Grenzen physikalischer Problemlösungen und Sichtweisen bei innerfachlichen, naturwissenschaftlichen und gesellschaftlichen Fragestellungen bewerten.

Inhalt

(Ustd. à 45 min)

Kompetenzen

Die Schülerinnen und Schüler…

Experiment / Medium

Kommentar

Anwendungen in Forschung und Technik:

Bewegung von Ladungsträgern in Feldern

(12 Ustd.)

beschreiben qualitativ und quantitativ die Bewegung von Ladungsträgern in homogenen elektrischen und magnetischen Feldern sowie in gekreuzten Feldern (Wien-Filter, Hall-Effekt) (E1, E2, E3, E4, E5 UF1, UF4),

erstellen, bei Variation mehrerer Parameter, Tabellen und Diagramme zur Darstellung von Messwerten aus dem Bereich der Elektrik (K1, K3, UF3),

beschreiben qualitativ die Erzeugung eines Elektronenstrahls in einer Elektronenstrahlröhre (UF1, K3),

ermitteln die Geschwindigkeitsänderung eines Ladungsträgers nach Durchlaufen einer Spannung (auch relativistisch) (UF2, UF4, B1),

schließen aus spezifischen Bahnkurvendaten beim Massenspektrometer auf wirkende Kräfte sowie Eigenschaften von Feldern und bewegten Ladungsträgern, (E5, UF2),

erläutern den Feldbegriff und zeigen dabei Gemeinsamkeiten und Unterschiede zwischen Gravitationsfeld, elektrischem und magnetischem Feld auf (UF3, E6),

erläutern den Einfluss der relativistischen Massenzunahme auf die Bewegung geladener Teilchen im Zyklotron (E6, UF4),

leiten physikalische Gesetze aus geeigneten Definitionen und bekannten Gesetzen deduktiv her (E6, UF2),

Hallsonde,

Halleffektgerät,

diverse Spulen, deren Felder vermessen werden (insbesondere lange Spulen und Helmholtzspulen),

Elektronenstrahlablenkröhre

visuelle Medien und Computersimulationen (ggf. RCLs) zum Massenspektrometer, Zyklotron und evtl. weiteren Teilchenbeschleunigern

Das Problem der Messung der Stärke des magnetischen Feldes der Helmholtzspulen (e/m – Bestimmung) wird wieder aufgegriffen,

Vorstellung des Aufbaus einer Hallsonde und Erarbeitung der Funktionsweise einer Hallsonde,

Veranschaulichung mit dem Halleffektgerät (Silber),

Kalibrierung einer Hallsonde,

Messungen mit der Hallsonde, u. a. nachträgliche Vermessung des Helmholtzspulenfeldes,

Bestimmung der magnetischen Feldkonstante,

Arbeits- und Funktionsweisen sowie die Verwendungszwecke diverser Elektronenröhren, Teilchenbeschleuniger und eines Massenspektrometers werden untersucht.

 

entscheiden für Problemstellungen aus der Elektrik, ob ein deduktives oder ein experimentelles Vorgehen sinnvoller ist (B4, UF2, E1),

wählen Definitionsgleichungen zusammengesetzter physikalischer Größen sowie physikalische Gesetze (u.a. Coulomb’sches Gesetz, Kraft auf einen stromdurchflossenen Leiter im Magnetfeld, Lorentzkraft, Spannung im homogenen E-Feld) problembezogen aus (UF2),

   

Moderne messtechnische Verfahren sowie Hilfsmittel zur Mathematisierung:

Auf- und Entladung von Kondensatoren,

Energie des elektrischen Feldes

(10 Ustd.)

erläutern an Beispielen den Stellenwert experimenteller Verfahren bei der Definition physikalischer Größen (elektrische und magnetische Feldstärke) und geben Kriterien zu deren Beurteilung an (z.B. Genauigkeit, Reproduzierbarkeit, Unabhängigkeit von Ort und Zeit) (B1, B4),

erläutern und veranschaulichen die Aussagen, Idealisierungen und Grenzen von Feldlinienmodellen, nutzen Feldlinienmodelle zur Veranschaulichung typischer Felder und interpretieren Feldlinienbilder (K3, E6, B4),

entscheiden für Problemstellungen aus der Elektrik, ob ein deduktives oder ein experimentelles Vorgehen sinnvoller ist (B4, UF2, E1),

wählen Definitionsgleichungen zusammengesetzter physikalischer Größen sowie physikalische Gesetze (u.a. Coulomb’sches Gesetz, Kraft auf einen stromdurchflossenen Leiter im Magnetfeld, Lorentzkraft, Spannung im homogenen E-Feld) problembezogen aus (UF2),

leiten physikalische Gesetze aus geeigneten Definitionen und bekannten Gesetzen deduktiv her (E6, UF2),

ermitteln die in elektrischen bzw. magnetischen Feldern gespeicherte Energie (Kondensator) (UF2),

beschreiben qualitativ und quantitativ, bei vorgegebenen Lösungsansätzen, Ladungs- und Entladungsvorgänge in Kondensatoren (E4, E5, E6),

diverse Kondensatoren (als Ladungs-/ Energiespeicher),

Aufbaukondensatoren mit der Möglichkeit die Plattenfläche und den Plattenabstand zu variieren,

statische Voltmeter bzw. Elektrometermessverstärker,

Schülerversuche zur Auf- und Entladung von Kondensatoren sowohl mit großen Kapazitäten (Messungen mit Multimeter) als auch mit kleineren Kapazitäten (Messungen mit Hilfe von Mess­wert­erfassungssystemen),

Computer oder GTR/CAS-Rechner zur Messwertverarbeitung

Kondensatoren werden als Ladungs-/ Energiespeicher vorgestellt (z.B. bei elektronischen Geräten wie Computern).

Die (Speicher-) Kapazität wird definiert und der Zusammenhang zwischen Kapazität, Plattenabstand und Plattenfläche für den Plattenkondensator (deduktiv mit Hilfe der Grundgleichung des elektrischen Feldes) ermittelt.

Plausibilitätsbetrachtung zur Grund­gleichung des elektrischen Feldes im Feldlinienmodell,

Ermittlung der elektrischen Feldkonstante (evtl. Messung),

Auf- und Entladevorgänge bei Kondensatoren werden messtechnisch erfasst, computerbasiert ausgewertet und mithilfe von Differentialgleichungen beschrieben.

deduktive Herleitung der im elektrischen Feld eines Kondensators gespeicherten elektrischen Energie

 

treffen im Bereich Elektrik Entscheidungen für die Auswahl von Messgeräten (Empfindlichkeit, Genauigkeit, Auflösung und Messrate) im Hinblick auf eine vorgegebene Problemstellung (B1),

wählen begründet mathematische Werkzeuge zur Darstellung und Auswertung von Messwerten im Bereich der Elektrik (auch computergestützte graphische Darstellungen, Linearisierungsverfahren, Kurvenanpassungen), wenden diese an und bewerten die Güte der Messergebnisse (E5, B4),

   

22 Ustd.

Summe

   
         


Kontext: Erzeugung, Verteilung und Bereitstellung elektrischer Energie

Leitfrage: Wie kann elektrische Energie gewonnen, verteilt und bereitgestellt werden?

Inhaltliche Schwerpunkte: Elektromagnetische Induktion

Kompetenzschwerpunkte: Schülerinnen und Schüler können

(UF2) zur Lösung physikalischer Probleme zielführend Definitionen, Konzepte sowie funktionale Beziehungen zwischen physikalischen Größen angemessen und begründet auswählen,

(E6) Modelle entwickeln sowie physikalisch-technische Prozesse mithilfe von theoretischen Modellen, mathematischen Modellierungen, Gedankenexperimenten und Simulationen erklären oder vorhersagen,

(B4) begründet die Möglichkeiten und Grenzen physikalischer Problemlösungen und Sichtweisen bei innerfachlichen, naturwissenschaftlichen und gesellschaftlichen Fragestellungen bewerten.

Inhalt

(Ustd. à 45 min)

Kompetenzen

Die Schülerinnen und Schüler…

Experiment / Medium

Kommentar

Induktion, das grundlegende Prinzip bei der Versorgung mit elektrischer Energie:

Induktionsvorgänge, Induktionsgesetz,

Lenz‘sche Regel,

Energie des magnetischen Feldes

(22 Ustd.)

entscheiden für Problemstellungen aus der Elektrik, ob ein deduktives oder ein experimen­telles Vorgehen sinnvoller ist (B4, UF2, E1),

wählen Definitionsgleichungen zusammengesetzter physikalischer Größen sowie physikalische Gesetze (u.a. Coulomb’sches Gesetz, Kraft auf einen stromdurchflossenen Leiter im Magnetfeld, Lorentzkraft, Spannung im homogenen E-Feld) problembezogen aus (UF2),

leiten physikalische Gesetze aus geeigneten Definitionen und bekannten Gesetzen deduktiv her (E6, UF2),

planen und realisieren Experimente zum Nachweis der Teilaussagen des Induktionsgesetzes (E2, E4, E5),

führen das Auftreten einer Induktionsspannung auf die zeitliche Änderung der von einem Leiter überstrichenen gerichteten Fläche in einem Magnetfeld zurück (u.a. bei der Erzeugung einer Wechselspannung) (E6),

erstellen, bei Variation mehrerer Parameter, Tabellen und Diagramme zur Darstellung von Messwerten aus dem Bereich der Elektrik (K1, K3, UF3),

treffen im Bereich Elektrik Entscheidungen für die Auswahl von Messgeräten (Empfindlichkeit, Genauigkeit, Auflösung und Messrate) im Hinblick auf eine vorgegebene Problemstellung (B1),

identifizieren Induktionsvorgänge aufgrund der zeitlichen Änderung der magnetischen Feldgröße B in Anwendungs- und Alltagssituationen (E1, E6, UF4),

Medien zur Information über prinzipielle Verfahren zur Erzeugung, Verteilung und Bereitstellung elektrischer Energie,

Bewegung eines Leiters im Magnetfeld – Leiterschaukel,

einfaches elektrodynamisches Mikrofon,

Gleich- und Wechsel­spannungsgeneratoren (vereinfachte Funktionsmo­delle für Unterrichtszwecke)

quantitativer Versuch zur elektromagnetischen In­duk­tion bei Änderung der Feld­größe B, registrierende Messung von B(t) und Uind(t),

„Aufbau-“ Transformatoren zur Spannungswandlung

Leiterschaukelversuch evtl. auch im Hinblick auf die Registrierung einer gedämpften mechanischen Schwingung auswertbar,

Gleich- und Wechselspannungsgeneratoren werden nur qualitativ behandelt.

Das Induktionsgesetz in seiner allgemeinen Form wird erarbeitet:

  1. Flächenänderung (deduktive Herleitung)
  2. Änderung der Feldgröße B (quantitatives Experiment)

Drehung einer Leiterschleife (qualitative Betrachtung)

Der magnetische Fluss wird definiert, das Induktionsgesetz als Zusammenfassung und Verall­gemeinerung der Ergebnisse formuliert.

qualitative Deutung des Versuchsergebnisses zur Selbstinduktion

 

wählen begründet mathematische Werkzeuge zur Darstellung und Auswertung von Messwerten im Bereich der Elektrik (auch computer-gestützte graphische Darstellungen, Linearisierungsverfahren, Kurvenanpassungen), wenden diese an und bewerten die Güte der Messergebnisse (E5, B4),

ermitteln die in magnetischen Feldern gespeicherte Energie (Spule) (UF2),

bestimmen die Richtungen von Induktionsströmen mithilfe der Lenz’schen Regel (UF2, UF4, E6),

begründen die Lenz’sche Regel mithilfe des Energie- und des Wechselwirkungskonzeptes (E6, K4),

Modellversuch zu einer „Überlandleitung“ (aus CrNi-Draht) mit zwei „Trafo-Stationen“, zur Untersuchung der Energieverluste bei unterschiedlich hohen Spannungen,

Versuch (qualitativ und quantitativ) zur Demonstra­tion der Selbstinduktion (registrierende Messung und Vergleich der Ein- und Ausschaltströme in parallelen Stromkreisen mit rein ohmscher bzw. mit induktiver Last),

Versuche zur Demonstration der Wirkung von Wirbelströmen,

diverse „Ringversuche“

Deduktive Herleitung des Terms für die Selbstinduktionsspannung einer langen Spule (ausgehend vom Induktionsgesetz), Interpretation des Vorzeichens mit Hilfe der Lenz’schen Regel

Definition der Induktivität,

messtechnische Erfassung und computerbasierte Auswertung von Ein- und Ausschaltvorgängen bei Spulen

deduktive Herleitung der im magnetischen Feld einer Spule gespeicherten magnetischen Energie

22 Ustd.

Summe

   


Kontext: Physikalische Grundlagen der drahtlosen Nachrichtenübermittlung

 

Leitfrage: Wie können Nachrichten ohne Materietransport übermittelt werden?

Inhaltliche Schwerpunkte: Elektromagnetische Schwingungen und Wellen

Kompetenzschwerpunkte: Schülerinnen und Schüler können

(UF1) physikalische Phänomene und Zusammenhänge unter Verwendung von Theorien, übergeordneten Prinzipien / Gesetzen und Basiskonzepten beschreiben und erläutern,

(UF2) zur Lösung physikalischer Probleme zielführend Definitionen, Konzepte sowie funktionale Beziehungen zwischen physikalischen Größen angemessen und begründet auswählen,

(E4) Experimente mit komplexen Versuchsplänen und Versuchsaufbauten, auch historisch bedeutsame Experimente, mit Bezug auf ihre Zielsetzungen erläutern und diese zielbezogen unter Beachtung fachlicher Qualitätskriterien durchführen,

(E5) Daten qualitativ und quantitativ im Hinblick auf Zusammenhänge, Regeln oder mathematisch zu formulierende Gesetzmäßigkeiten analysieren und Ergebnisse verallgemeinern,

(E6) Modelle entwickeln sowie physikalisch-technische Prozesse mithilfe von theoretischen Modellen, mathematischen Modellierungen, Gedankenexperimenten und Simulationen erklären oder vorhersagen,

(K3) physikalische Sachverhalte und Arbeitsergebnisse unter Verwendung situationsangemessener Medien und Darstellungsformen adressatengerecht präsentieren,

(B1) fachliche, wirtschaftlich-politische und ethische Kriterien bei Bewertungen von physikalischen oder technischen Sachverhalten unterscheiden und begründet gewichten,

(B4) begründet die Möglichkeiten und Grenzen physikalischer Problemlösungen und Sichtweisen bei innerfachlichen, naturwissenschaftlichen und gesellschaftlichen Fragestellungen bewerten.

Inhalt

(Ustd. à 45 min)

Kompetenzen

Die Schülerinnen und Schüler…

Experiment / Medium

Kommentar

Der elektromagnetische Schwingkreis – das Basiselement der Nachrichtentechnik:

Elektromagnetische Schwingungen im RLC-Kreis,

Energieumwandlungsprozesse im RLC-Kreis

(12 Ustd.)

erläutern die Erzeugung elektromagnetischer Schwingungen, erstellen aussagekräftige Diagramme und werten diese aus (E2, E4, E5, B1),

treffen im Bereich Elektrik Entscheidungen für die Auswahl von Messgeräten (Empfindlichkeit, Genauigkeit, Auflösung und Messrate) im Hinblick auf eine vorgegebene Problemstellung (B1),

erläutern qualitativ die bei einer ungedämpften elektromagnetischen Schwingung in der Spule und am Kondensator ablaufenden physikalischen Prozesse (UF1, UF2),

beschreiben den Schwingvorgang im RLC-Kreis qualitativ als Energieumwandlungsprozess und benennen wesentliche Ursachen für die Dämpfung (UF1, UF2, E5),

MW-Radio aus Aufbauteilen der Elektriksammlung mit der Möglichkeit, die modulierte Trägerschwingung (z.B. oszilloskopisch) zu registrie­ren,

einfache Resonanzversuche (auch aus der Mechanik / Akustik),

Zur Einbindung der Inhalte in den Kontext wird zunächst ein Mittelwellenradio aus Aufbauteilen der Elektriksammlung vorgestellt.

Der Schwingkreis als zentrale Funktionseinheit des MW-Radios: Es kann leicht gezeigt werden, dass durch Veränderung von L bzw. C der Schwingkreis so „abgestimmt“ werden kann, dass (z.B. oszilloskopisch) eine modulierte Trägerschwingung registriert werden kann, also der Schwingkreis „von außen“ angeregt wird.

Die Analogie zu mechani­schen Resonanzversuchen wird aufgezeigt.

 

wählen begründet mathematische Werkzeuge zur Darstellung und Auswertung von Messwerten im Bereich der Elektrik (auch computer-gestützte graphische Darstellungen, Linearisierungsverfahren, Kurvenanpassungen), wenden diese an und bewerten die Güte der Messergebnisse (E5, B4),

entscheiden für Problemstellungen aus der Elektrik, ob ein deduktives oder ein experimentelles Vorgehen sinnvoller ist (B4, UF2, E1),

RLC – Serienschwingkreis
insbesondere mit registrie­renden Messverfahren und computergestützten Auswerteverfahren,

ggf. Meißner- oder Dreipunkt-Rückkopplungsschaltung zur Erzeugung / Demonstration entdämpfter elektromagne­tischer Schwingungen

Die zentrale Funktionseinheit „Schwingkreis“ wird genauer untersucht.

Spannungen und Ströme im RCL – Kreis werden zeitaufgelöst registriert, die Diagramme sind Grundlage für die qualitative Beschreibung der Vorgänge in Spule und Kondensator.

Quantitativ wird nur die ungedämpfte Schwingung beschrieben (inkl. der Herleitung der Thomsonformel).

 

wählen Definitionsgleichungen zusammengesetzter physikalischer Größen sowie physikalische Gesetze problembezogen aus (UF2),

leiten physikalische Gesetze aus geeigneten Definitionen und bekannten Gesetzen deduktiv her (E6, UF2).

 

Die Möglichkeiten zur mathema­tischen Beschreibung gedämpfter Schwingungen sowie Möglichkeiten der Entdämpfung / Rückkopplung können kurz und rein qualitativ angesprochen werden.

Materiefreie Über-tragung von Information und Energie:

Entstehung und Ausbreitung elektro-magnetischer Wellen,

Energietransport und Informationsüber-tragung durch elektro-magnetische Wellen,

(16 Ustd.)

beschreiben den Hertz’schen Dipol als einen (offenen) Schwingkreis (UF1, UF2, E6),

erläutern qualitativ die Entstehung eines elektrischen bzw. magnetischen Wirbelfelds bei B– bzw. E-Feldänderung und die Ausbreitung einer elektromagnetischen Welle (UF1, UF4, E6),

beschreiben qualitativ die lineare Ausbreitung harmonischer Wellen als räumlich und zeitlich periodischen Vorgang (UF1, E6),

erläutern anhand schematischer Darstellungen Grundzüge der Nutzung elektromagnetischer Trägerwellen zur Übertragung von Informationen (K2, K3, E6).

ermitteln auf der Grundlage von Brechungs-, Beugungs- und Interferenzerscheinungen (mit Licht- und Mikrowellen) die Wellenlängen und die Lichtgeschwindigkeit(E2, E4, E5).

beschreiben die Phänomene Reflexion, Brechung, Beugung und Interferenz im Wellenmodell und begründen sie qualitativ mithilfe des Huygens’schen Prinzips (UF1, E6).

erläutern konstruktive und destruktive Interferenz sowie die entsprechenden Bedingungen mithilfe geeigneter Darstellungen (K3, UF1),

L-C-Kreis, der sich mit einem magnetischen Wechselfeld über eine „Antenne“ zu Schwingungen anregen lässt,

dm-Wellen-Sender mit Zubehör (Empfängerdipol, Feldindikatorlampe),

Visuelle Medien zur Veranschaulichung der zeitlichen Änderung der E- und B-Felder beim Hertz’schen Dipol, entsprechende Computersimulationen,

Ringentladungsröhre (zur Vertiefung der elektromagnetischen Induktion),

visuelle Medien zur magneto-elektrischen Induktion,

Visuelle Medien zur Veranschaulichung der Ausbreitung einer elektromagnetischen Welle, entsprechende Computersimulationen,

Versuche mit dem dm-Wellen-Sender (s.o.),

Erinnerung an die Anregung des MW-Radio-Schwingkreises durch „Radiowellen“ zur Motivation der Erforschung sogenannter elektromagnetischer Wellen,

Das Phänomen der elektromagnetische Welle, ihre Erzeugung und Ausbreitung werden erarbeitet.

Übergang vom Schwingkreis zum Hertz’schen Dipol durch Verkleinerung von L und C,

Überlegungen zum „Ausbreitungsmechanismus“ elektromagnetischer Wellen:

  • Induktion findet auch ohne Leiter („Induktionsschleife“) statt!
  • Auch im Bereich zwischen den Kondensatorplatten existiert ein magnetisches Wirbelfeld.
 

entscheiden für Problemstellungen aus der Elektrik, ob ein deduktives oder ein experimentelles Vorgehen sinnvoller ist (B4, UF2, E1),

leiten physikalische Gesetze aus geeigneten Definitionen und bekannten Gesetzen deduktiv her (E6, UF2),

beschreiben die Interferenz an Doppelspalt und Gitter im Wellenmodell und leiten die entsprechenden Terme für die Lage der jeweiligen Maxima n-ter Ordnung her (E6, UF1, UF2),

wählen Definitionsgleichungen zusammengesetzter physikalischer Größen sowie physikalische Gesetze problembezogen aus (UF2),

erstellen, bei Variation mehrerer Parameter, Tabellen und Diagramme zur Darstellung von Messwerten (K1, K3, UF3).

Visuelle Medien zur Veranschaulichung der Ausbreitung einer linearen (harmonischen) Welle,
auch Wellenmaschine zur Erinnerung an mechanische Wellen, entsprechende Computersimulationen,

Wellenwanne

Mikrowellensender / -empfänger mit Gerätesatz für Beugungs-, Brechungs- und Interferenzexperimente,

Interferenz-, Beugungs- und Brechungsexperimente mit (Laser-) Licht an Doppelspalt und Gitter (quantitativ) –
sowie z.B. an Kanten, dünnen Schichten,… (qualitativ)

Beugungs-, Brechungs- und Interferenzerscheinungen zum Nachweis des Wellencharakters elektromagnetischer Wellen,

28 Ustd.

Summe

     
           


Inhaltsfeld: Quantenphysik(LK)

Kontext: Erforschung des Photons

Leitfrage: Besteht Licht doch aus Teilchen?

Inhaltliche Schwerpunkte: Licht und Elektronen als Quantenobjekte, Welle-Teilchen-Dualismus, Quantenphysik und klassische Physik

Kompetenzschwerpunkte: Schülerinnen und Schüler können

(UF2) zur Lösung physikalischer Probleme zielführend Definitionen, Konzepte sowie funktionale Beziehungen zwischen physikalischen Größen angemessen und begründet auswählen,

(E6) Modelle entwickeln sowie physikalisch-technische Prozesse mithilfe von theoretischen Modellen, mathematischen Modellierungen, Gedankenexperimenten und Simulationen erklären oder vorhersagen,

(E7) naturwissenschaftliches Arbeiten reflektieren sowie Veränderungen im Weltbild und in Denk- und Arbeitsweisen in ihrer historischen und kulturellen Entwicklung darstellen.

Inhalt

(Ustd. à 45 min)

Kompetenzen

Die Schülerinnen und Schüler…

Experiment / Medium

Kommentar

Lichtelektrischer Effekt

(1 Ustd.)

diskutieren und begründen das Versagen der klassi­schen Modelle bei der Deutung quantenphysika­lischer Prozesse (K4, E6)

legen am Beispiel des Photoeffekts und seiner Deutung dar, dass neue physikalische Experimente und Phänomene zur Veränderung des physikalischen Weltbildes bzw. zur Erweiterung oder Neubegründung physikalischer Theorien und Modelle führen können (E7),

Entladung einer positiv bzw. negativ geladenen (frisch geschmirgelten) Zinkplatte mithilfe des Lichts einer Hg-Dampf-Lampe (ohne und mit UV-absorbierender Glas­scheibe)

Qualitative Demonstration des Photo­effekts

Teilcheneigenschaften von Photonen

Planck´sches Wirkungsquantum

(7 Ustd.)

erläutern die qualitativen Vorhersagen der klassischen Elektrodynamik zur Energie von Photoelektronen (bezogen auf die Frequenz und Intensität des Lichts) (UF2, E3),

erläutern den Widerspruch der experimentellen Befunde zum Photo­effekt zur klassischen Physik und nutzen zur Erklärung die Einstein’sche Lichtquantenhypothese (E6, E1),

diskutieren das Auftreten eines Paradigmenwechsels in der Physik am Beispiel der quantenmechanischen Beschreibung von Licht und Elektronen im Vergleich zur Beschreibung mit klassischen Modellen (B2, E7),

beschreiben und erläutern Aufbau und Funktionsweise von komplexen Versuchsaufbauten (u.a. zur h-Bestimmung und zur Elektronenbeugung) (K3, K2),

ermitteln aus den experimentellen Daten eines Versuchs zum Photo­effekt das Planck´sche Wirkungsquantum (E5, E6),

1. Versuch zur h-Bestimmung: Gegenspannungsmethode (Hg-Linien mit Cs-Diode)

2. Versuch zur h-Bestimmung: Mit Simulationsprogramm (in häuslicher Arbeit)

Spannungsbestimmung mithilfe Kon­densatoraufladung erwähnen

Wenn genügend Zeit zur Verfügung steht, kann an dieser Stelle auch der Compton-Effekt behandelt werden:

Bedeutung der Anwendbarkeit der (mechanischen) Stoßgesetze hinsicht­lich der Zuordnung eines Impulses für Photonen

Keine detaillierte (vollständig relativis­tische) Rechnung im Unterricht not­wendig, Rechnung ggf. als Referat vorstellen lassen

10 Ustd.

Summe

   


Kontext: Röntgenstrahlung, Erforschung des Photons

Leitfrage: Was ist Röntgenstrahlung?

Inhaltliche Schwerpunkte: Licht und Elektronen als Quantenobjekte

Kompetenzschwerpunkte: Schülerinnen und Schüler können

(UF1) physikalische Phänomene und Zusammenhänge unter Verwendung von Theorien, übergeordneten Prinzipien / Gesetzen und Basiskonzepten beschreiben und erläutern,

(E6) Modelle entwickeln sowie physikalisch-technische Prozesse mithilfe von theoretischen Modellen, mathematischen Modellierungen, Gedankenexperimenten und Simulationen erklären oder vorhersagen,

Inhalt

(Ustd. à 45 min)

Kompetenzen

Die Schülerinnen und Schüler…

Experiment / Medium

Kommentar

Röntgenröhre

Röntgenspektrum

(2 Ustd.)

beschreiben den Aufbau einer Röntgenröhre (UF1),

Röntgenröhre der Schul­röntgeneinrichtung

Sollte keine Röntgenröhre zur Verfügung stehen, kann mit einem interaktiven Bildschirmexperiment (IBE) gearbeitet werden (z.B. http://www.mackspace.de/unterricht/simulationen_physik/quantenphysik/sv/roentgen.php
oder
http://www.uni-due.de/physik/ap/iabe/roentgen_b10/roentgen_b10_uebersicht.html)

Die Behandlung der Röntgenstrahlung erscheint an dieser Stelle als „Ein­schub“ in die Reihe zur Quantenphysik sinnvoll, obwohl sie auch zu anderen Sachbereichen Querverbindungen hat und dort durchgeführt werden könnte (z.B. „Physik der Atomhülle“)

Zu diesem Zeitpunkt müssen kurze Sachinformationen zum Aufbau der Atomhülle und den Energiezuständen der Hüllelektronen gegeben (recher­chiert) werden.

Das IBE sollte für die häusliche Arbeit genutzt werden.

Bragg’sche Reflexionsbedingung

(2 Ustd.)

erläutern die Bragg-Reflexion an einem Einkristall und leiten die Bragg’sche Reflexionsbedingung her (E6),

Aufnahme eines Röntgen­spektrums (Winkel-Inten­sitätsdiagramm vs. Wellen­längen-Intensitätsdiagramm)

Die Bragg’sche Reflexionsbedingung basiert auf Welleninterpretation, die Registrierung der Röntgenstrahlung mithilfe des Detektors hat den Teil­chenaspekt im Vordergrund

Planck’sches Wirkungsquantum

(1 Ustd.)

deuten die Entstehung der kurzwelligen Röntgenstrahlung als Umkehrung des Photoeffekts (E6),

 

Eine zweite Bestimmungsmethode für das Planck’sche Wirkungsquantum

Strukturanalyse mithilfe der Drehkristallmethode

Strukturanalyse nach Debye-Scherrer

(2 Ustd.)

   

Schülerreferate mit Präsentationen zur Debye-Scherrer-Methode

Röntgenröhre in Medizin und Technik

(2 Ustd.)

führen Recherchen zu komplexeren Fragestellungen der Quantenphysik durch und präsentieren die Ergebnisse (K2, K3),

Film / Video / Foto

Schülervorträge auf fachlich angemessenem Niveau (mit adäquaten fachsprachlichen Formulierungen)

Schülerreferate mit Präsentationen anhand Literatur- und Internetrecherchen

Ggf. Exkursion zum Röntgenmuseum in Lennep

Ggf. Exkursion zur radiologischen Ab­teilung des Krankenhauses (die aber auch in Rahmen der Kernphysik (s. dort: „Biologische Wirkung ionisieren­der Strahlung“) durchgeführt werden kann)

9 Ustd.

Summe

   


Kontext: Erforschung des Elektrons

Leitfrage: Kann das Verhalten von Elektronen und Photo-nen durch ein gemeinsames Modell beschrieben werden?

Inhaltliche Schwerpunkte: Welle-Teilchen-Dualismus

Kompetenzschwerpunkte: Schülerinnen und Schüler können

(UF1) physikalische Phänomene und Zusammenhänge unter Verwendung von Theorien, übergeordneten Prinzipien / Gesetzen und Basiskonzepten beschreiben und erläutern,

(K3) physikalische Sachverhalte und Arbeitsergebnisse unter Verwendung situationsangemessener Medien und Darstellungsformen adressatengerecht präsentieren,

Inhalt

(Ustd. à 45 min)

Kompetenzen

Die Schülerinnen und Schüler…

Experiment / Medium

Kommentar

Wellencharakter von Elektronen

(2 Ustd.)

interpretieren experimentelle Beobachtungen an der Elektronenbeugungsröhre mit den Welleneigenschaften von Elektronen (E1, E5, E6),

Qualitative Demonstrationen mit der Elektronenbeugungs­röhre

Qualitative Demonstrationen mithilfe RCL (Uni Kaiserslau­tern: http://rcl-munich.informatik.unibw-muenchen.de/ )

Hinweise auf erlaubte nichtrelativis­tische Betrachtung (bei der verwen­deten Elektronen­beugungsröhre der Schule)

Streuung und Beugung von Elektronen

De Broglie-Hypothese

(4 Ustd.)

beschreiben und erläutern Aufbau und Funktionsweise von komplexen Versuchsaufbauten (u.a. zur h-Bestimmung und zur Elektronenbeugung) (K3, K2),

erklären die de Broglie-Hypothese am Beispiel von Elektronen (UF1),

Quantitative Messung mit der Elektronenbeugungsröhre

Herausstellen der Bedeutung der Bragg’schen Reflexi­onsbedingung für (Röntgen-) Photonen wie für Elektronen mit Blick auf den Wellenaspekt von Quantenobjekten

Dabei Betonung der herausragenden Bedeutung der de Broglie-Gleichung für die quantitative Beschreibung der (lichtschnellen und nicht lichtschneller) Quantenobjekte

6 Ustd.

Summe

   
         

Kontext: Die Welt kleinster Dimensionen – Mikroobjekte und Quantentheorie

Leitfrage: Was ist anders im Mikrokosmos?

Inhaltliche Schwerpunkte: Welle-Teilchen-Dualismus und Wahrscheinlichkeitsinterpretation, Quantenphysik und klassische Physik

Kompetenzschwerpunkte: Schülerinnen und Schüler können

(UF1) physikalische Phänomene und Zusammenhänge unter Verwendung von Theorien, übergeordneten Prinzipien / Gesetzen und Basiskonzepten beschreiben und erläutern,

(E7) naturwissenschaftliches Arbeiten reflektieren sowie Veränderungen im Weltbild und in Denk- und Arbeitsweisen in ihrer historischen und kulturellen Entwicklung darstellen.

Inhalt

(Ustd. à 45 min)

Kompetenzen

Die Schülerinnen und Schüler…

Experiment / Medium

Kommentar

linearer Potentialtopf

Energiewerte im line­aren Potentialtopf

(4 Ustd.)

deuten das Quadrat der Wellenfunktion qualitativ als Maß für die Aufenthaltswahrscheinlichkeit von Elektronen (UF1, UF4),

ermitteln die Wellenlänge und die Energiewerte von im linearen Potentialtopf gebundenen Elektronen (UF2, E6).

 

Auf die Anwendbarkeit des Potential­topf-Modells bei Farbstoffmolekülen wird hingewiesen.

Die Anwendbarkeit des (mecha­nischen) Modells der stehenden Welle kann insofern bestätigt werden, als dass die für die stehenden Wellen sich ergebende DGl mit derjenigen der (zeitunabhängigen) Schrödinger-DGl strukturell übereinstimmt.

Ein Ausblick auf die Schrödinger-Gleichung genügt.

Wellenfunktion und Aufenthalts­wahrscheinlichkeit

(4 Ustd.)

erläutern die Aufhebung des Welle-Teilchen-Dualismus durch die Wahrscheinlichkeitsinterpretation (UF1, UF4),

erläutern die Bedeutung von Gedankenexperimenten und Simulationsprogrammen zur Erkenntnisgewinnung bei der Untersuchung von Quantenobjekten (E6, E7).

erläutern bei Quantenobjekten das Auftreten oder Verschwinden eines Interferenzmusters mit dem Begriff der Komplementarität (UF1, E3),

diskutieren das Auftreten eines Paradigmenwechsels in der Physik am Beispiel der quantenmechanischen Beschreibung von Licht und Elektronen im Vergleich zur Beschreibung mit klassischen Modellen (B2, E7),

stellen anhand geeigneter Phänomene dar, wann Licht durch ein Wellenmodell bzw. ein Teilchenmodell beschrieben werden kann (UF1, K3, B1),

Demonstration des Durch­gangs eines einzelnen Quan­tenobjekts durch einen Dop­pelspalt mithilfe eines Simula­tionsprogramms und mithilfe von Videos

 

Heisenberg´sche Unschärferelation

(2 Ustd.)

erläutern die Aussagen und die Konsequenzen der Heisenberg´schen Unschärferelation (Ort-Impuls, Energie-Zeit) an Beispielen (UF1, K3),

bewerten den Einfluss der Quantenphysik im Hinblick auf Veränderungen des Weltbildes und auf Grundannahmen zur physikalischen Erkenntnis (B4, E7).

 

Die Heisenberg’sche Unschärferelation kann (aus fachlicher Sicht) plausibel gemacht werden auf­grund des sich aus der Interferenz­bedingung ergebenden Querimpulses eines Quantenobjekts, wenn dieses einen Spalt passiert.

10 Ustd.

Summe

   


Inhaltsfeld: Atom-, Kern- und Elementarteilchenphysik (LK)

Kontext: Geschichte der Atommodelle, Lichtquellen und ihr Licht

Leitfrage: Wie gewinnt man Informationen zum Aufbau der Materie?

Inhaltliche Schwerpunkte: Atomaufbau

Kompetenzschwerpunkte: Schülerinnen und Schüler können

(UF1) physikalische Phänomene und Zusammenhänge unter Verwendung von Theorien, übergeordneten Prinzipien / Gesetzen und Basiskonzepten beschreiben und erläutern,

(E5) Daten qualitativ und quantitativ im Hinblick auf Zusammenhänge, Regeln oder mathematisch zu formulierende Gesetzmäßigkeiten analysieren und Ergebnisse verallgemeinern,

(E7) naturwissenschaftliches Arbeiten reflektieren sowie Veränderungen im Weltbild und in Denk- und Arbeitsweisen in ihrer historischen und kulturellen Entwicklung darstellen.

Inhalt

(Ustd. à 45 min)

Kompetenzen

Die Schülerinnen und Schüler…

Experiment / Medium

Kommentar

Atomaufbau:

Kern-Hülle-Modell

(2 Ustd.)

geben wesentliche Schritte in der historischen Entwicklung der Atom­modelle bis hin zum Kern-Hülle-Modell wieder (UF1),

Recherche in Literatur und Internet

Diverse Atommodelle (Antike bis Anfang 20. Jhd.)

 
   

Rutherford’scher Streuversuch

Per Arbeitsblatt oder Applet (z.B.. http://www.schulphysik.de/java/physlet/applets/rutherford.html)

 

Energiequantelung der Hüllelektronen

(3 Ustd.)

erklären Linienspektren in Emission und Absorption sowie den Franck-Hertz-Versuch mit der Energiequantelung in der Atomhülle (E5),

Linienspektren, Franck-Hertz-Versuch

Linienspektren deuten auf diskrete Energien hin

 

Linienspektren

(3 Ustd.)

stellen die Bedeutung des Franck-Hertz-Versuchs und der Experimente zu Linienspektren in Bezug auf die historische Bedeutung des Bohr’schen Atommodells dar (E7).

Durchstrahlung einer Na-Flamme mit Na- und Hg-Licht (Schattenbildung), Linienspektren von H

Demonstrationsversuch, Arbeitsblatt

 

Bohr’sche Postulate

(2 Ustd.)

formulieren geeignete Kriterien zur Beurteilung des Bohr´schen Atommodells aus der Perspektive der klassischen und der Quantenphysik (B1, B4),

Literatur, Arbeitsblatt

Berechnung der Energieniveaus, Bohr’scher Radius

 

10 Ustd.

Summe

   
           

Kontext: Physik in der Medizin (Bildgebende Verfahren, Radiologie)

Leitfrage: Wie nutzt man Strahlung in der Medizin?

Inhaltliche Schwerpunkte: Ionisierende Strahlung, Radioaktiver Zerfall

Kompetenzschwerpunkte: Schülerinnen und Schüler können

(UF3) physikalische Sachverhalte und Erkenntnisse nach fachlichen Kriterien ordnen und strukturieren,

(E6) Modelle entwickeln sowie physikalisch-technische Prozesse mithilfe von theoretischen Modellen, mathematischen Modellierungen, Gedankenexperimenten und Simulationen erklären oder vorhersagen,

(UF4) Zusammenhänge zwischen unterschiedlichen natürlichen bzw. technischen Vorgängen auf der Grundlage eines vernetzten physikalischen Wissens erschließen und aufzeigen.

Inhalt

(Ustd. à 45 min)

Kompetenzen

Die Schülerinnen und Schüler…

Experiment / Medium

Kommentar

Ionisierende Strahlung:

Detektoren

(3 Ustd.)

benennen Geiger-Müller-Zählrohr und Halbleiterdetektor als experimentelle Nachweismöglichkeiten für ionisierende Strahlung und unterscheiden diese hinsichtlich ihrer Möglichkeiten zur Messung von Energien (E6),

Geiger-Müller-Zählrohr, Arbeitsblatt

Nebelkammer

Ggf. Schülermessungen mit Zählrohren (Alltagsgegenstände, Nulleffekt , Präparate etc.)

Demonstration der Nebelkammer, ggf. Schülerbausatz

Material zu Halbleiterdetektoren

Strahlungsarten

(5 Ustd.)

erklären die Ablenkbarkeit von ionisierenden Strahlen in elektrischen und magnetischen Feldern sowie die Ionisierungsfähigkeit und Durchdringungsfähigkeit mit ihren Eigenschaften (UF3),

erklären die Entstehung des Bremsspektrums und des charak­teristischen Spektrums der Röntgenstrahlung (UF1),

benennen Geiger-Müller-Zählrohr und Halbleiterdetektor als experimentelle Nachweismöglichkeiten für ionisierende Strahlung und unterscheiden diese hinsichtlich ihrer Möglichkeiten zur Messung von Energien (E6),

erläutern das Absorptionsgesetz für Gamma-Strahlung, auch für verschiedene Energien (UF3),

Absorption von a-, b-, g-Strahlung

Ablenkung von b-Strahlen im Magnetfeld

Literatur (zur Röntgen- , Neutronen- und Schwerionenstrahlung)

Ggf. Absorption und Ablenkung in Schülerexperimenten

Dosimetrie

(2 Ustd.)

erläutern in allgemein verständlicher Form bedeutsame Größen der Dosimetrie (Aktivität, Energie- und Äquivalentdosis) auch hinsichtlich der Vorschriften zum Strahlenschutz (K3),

Video zur Dosimetrie

Auswertung von Berichten über Unfälle im kerntechnischen Bereich

 

Bildgebende Verfahren

(4 Ustd.)

stellen die physikalischen Grundlagen von Röntgenaufnahmen und Szintigrammen als bildgebende Verfahren dar (UF4),

beurteilen Nutzen und Risiken ionisierender Strahlung unter verschiedenen Aspekten (B4),

Schülervorträge auf fachlich angemessenem Niveau (mit adäquaten fachsprachlichen Formulierungen)

Ggf. Exkursion zur radiologischen Abteilung des Krankenhauses

Nutzung von Strahlung zur Diagnose und zur Therapie bei Krankheiten des Menschen (von Lebewesen) sowie zur Kontrolle bei technischen Anlagen

14 Ustd.

Summe

   
         

 

Kontext: (Erdgeschichtliche) Altersbestimmungen

Leitfrage: Wie funktioniert die 14C-Methode?

Inhaltliche Schwerpunkte: Radioaktiver Zerfall

Kompetenzschwerpunkte: Schülerinnen und Schüler können

(UF2) zur Lösung physikalischer Probleme zielführend Definitionen, Konzepte sowie funktionale Beziehungen zwischen physikalischen Größen angemessen und begründet auswählen,

(E5) Daten qualitativ und quantitativ im Hinblick auf Zusammenhänge, Regeln oder mathematisch zu formulierende Gesetzmäßigkeiten analysieren und Ergebnisse verallgemeinern,

Inhalt

(Ustd. à 45 min)

Kompetenzen

Die Schülerinnen und Schüler…

Experiment / Medium

Kommentar

Radioaktiver Zerfall:

Kernkräfte

(1 Ustd.)

benennen Protonen und Neutronen als Kernbausteine, identifizieren Isotope und erläutern den Aufbau einer Nuklidkarte (UF1),

Ausschnitt aus Nuklidkarte

Aufbauend auf Physik- und Chemieunterreicht der S I

 

Zerfallsprozesse

(7 Ustd.)

identifizieren natürliche Zerfallsreihen sowie künstlich herbeigeführte Kernumwandlungsprozesse mithilfe der Nuklidkarte (UF2),

Elektronische Nuklidkarte

Umgang mit einer Nuklidkarte

 
 

entwickeln Experimente zur Bestimmung der Halbwertszeit radioaktiver Substanzen (E4, E5),

Radon-Messung im Schulkeller

(Zentralabitur 2008)

Siehe http://www.physik-box.de/radon/radonseite.html

Ggf. Auswertung mit Tabellenkalkulation durch Schüler

 
 

nutzen Hilfsmittel, um bei radioaktiven Zerfällen den funktionalen Zusammenhang zwischen Zeit und Abnahme der Stoffmenge sowie der Aktivität radioaktiver Substanzen zu ermitteln (K3),

Tabellenkalkulation

Linearisierung, Quotientenmethode, Halbwertszeitabschätzung, ggf. logarithmische Auftragung

 
 

leiten das Gesetz für den radioaktiven Zerfall einschließlich eines Terms für die Halbwertszeit her (E6),

Ggf. CAS

Ansatz analog zur quantitativen Beschreibung von Kondensatorentladungen

 

Altersbestimmung

(2 Ustd.)

bestimmen mithilfe des Zerfallsgesetzes das Alter von Materialien mit der C14-Methode (UF2),

Arbeitsblatt

Ggf. Uran-Blei-Datierung

 

10 Ustd.

Summe

   
           


Kontext: Energiegewinnung durch nukleare Prozesse

Leitfrage: Wie funktioniert ein Kernkraftwerk?

Inhaltliche Schwerpunkte: Kernspaltung und Kernfusion, Ionisierende Strahlung

Kompetenzschwerpunkte: Schülerinnen und Schüler können

(B1) fachliche, wirtschaftlich-politische und ethische Kriterien bei Bewertungen von physikalischen oder technischen Sachverhalten unterscheiden und begründet gewichten,

(UF4) Zusammenhänge zwischen unterschiedlichen natürlichen bzw. technischen Vorgängen auf der Grundlage eines vernetzten physikalischen Wissens erschließen und aufzeigen.

Inhalt

(Ustd. à 45 min)

Kompetenzen

Die Schülerinnen und Schüler…

Experiment / Medium

Kommentar

Kernspaltung und Kernfusion:

Massendefekt, Äquivalenz von Masse und Energie, Bindungsenergie

(2 Ustd.)

bewerten den Massendefekt hinsichtlich seiner Bedeutung für die Gewinnung von Energie (B1),

bewerten an ausgewählten Beispielen Rollen und Beiträge von Physikerinnen und Physikern zu Erkenntnissen in der Kern- und Elementarteilchenphysik (B1),

Video zu Kernwaffenexplosion

Z.B. YouTube

Kettenreaktion

(2 Ustd.)

erläutern die Entstehung einer Kettenreaktion als relevantes Merkmal für einen selbstablaufenden Prozess im Nuklearbereich (E6),

beurteilen Nutzen und Risiken von Kernspaltung und Kernfusion anhand verschiedener Kriterien (B4),

Mausefallenmodell, Video, Applet

Videos zum Mausefallenmodell sind im Netz (z.B. bei YouTube) verfügbar

Kernspaltung, Kernfusion

(5 Ustd.)

beschreiben Kernspaltung und Kernfusion unter Berücksichtigung von Bindungsenergien (quantitativ) und Kernkräften (qualitativ) (UF4),

Diagramm B/A gegen A, Tabellenwerk, ggf. Applet

Z.B. http://www.leifiphysik.de

 

hinterfragen Darstellungen in Medien hinsichtlich technischer und sicherheitsrelevanter Aspekte der Energiegewinnung durch Spaltung und Fusion (B3, K4).

Recherche in Literatur und Internet

Schülerdiskussion, ggf. Fish Bowl, Amerikanische Debatte, Pro-Kontra-Diskussion

Siehe http://www.sn.schule.de/~sud/methodenkompendium/module/2/1.htm

9 Ustd.

Summe

   
         

Kontext: Forschung am CERN und DESY – Elementarteilchen und ihre fundamentalen Wechselwirkungen

Leitfrage: Was sind die kleinsten Bausteine der Materie?

Inhaltliche Schwerpunkte: Elementarteilchen und ihre Wechselwirkungen

Kompetenzschwerpunkte: Schülerinnen und Schüler können

(UF3) physikalische Sachverhalte und Erkenntnisse nach fachlichen Kriterien ordnen und strukturieren,

(K2) zu physikalischen Fragestellungen relevante Informationen und Daten in verschiedenen Quellen, auch in ausgewählten wissenschaftlichen Publikationen, recherchieren, auswerten und vergleichend beurteilen,

Inhalt

(Ustd. à 45 min)

Kompetenzen

Die Schülerinnen und Schüler…

Experiment / Medium

Kommentar

Kernbausteine und Elementarteilchen

(4 Ustd.)

systematisieren mithilfe des heutigen Standardmodells den Aufbau der Kernbausteine und erklären mit ihm Phänomene der Kernphysik (UF3),

Existenz von Quarks (Video)

Internet (CERN / DESY)

Da in der Schule kaum Experimente zum Thema „Elementarteilchenphysik“ vorhanden sind, sollen besonders Rechercheaufgaben und Präsenta­tionen im Unterricht genutzt werden.

Internet: http://project-physicsteaching.web.cern.ch/project-physicsteaching/german/

Ggf. Schülerreferate

Kernkräfte

Austauschteilchen der fundamentalen Wechselwirkungen

(4 Ustd.)

vergleichen das Modell der Austauschteilchen im Bereich der Elementarteilchen mit dem Modell des Feldes (Vermittlung, Stärke und Reichweite der Wechselwirkungskräfte) (E6).

erklären an Beispielen Teilchenumwandlungen im Standardmodell mithilfe der Heisenberg’schen Unschärferelation und der Energie-Masse-Äquivalenz (UF1).

Darstellung der Wechsel­wirkung mit Feynman-Graphen (anhand von Literatur)

Besonderer Hinweis auf andere Sichtweise der „Kraftübertragung“: Feldbegriff vs. Austauschteilchen

Die Bedeutung der Gleichung E=mc² (den SuS bekannt aus Relativitätstheorie) in Verbindung mit der Heisenberg’schen Unschärferelation in der Form (den SuS bekannt aus Elementen der Quantenphysik) für die Möglichkeit des kurzzeitigen Entstehens von Austauschteilchen ist herauszustellen.

Aktuelle Forschung und offene Fragen der Elementarteilchenphysik

(z.B. Higgs-Teilchen, Dunkle Materie, Dunkle Energie, Asymmetrie zwischen Materie und Antimaterie, …)

(3 Ustd.)

recherchieren in Fachzeitschriften, Zeitungsartikeln bzw. Veröffentlichungen von Forschungseinrichtungen zu ausgewählten aktuellen Entwicklungen in der Elementarteilchenphysik (K2),

Literatur und Recherche im Internet

„CERN-Rap“: http://www.youtube.com/watch?v=7VshToyoGl8

Hier muss fortlaufend berücksichtigt werden, welches der aktuelle Stand der Forschung in der Elementarteilchenphysik ist (derzeit: Higgs-Teilchen, Dunkle Materie, Dunkle Energie, Asymmetrie zwischen Materie und Antimaterie, …)

Der CERN-Rap gibt eine für Schülerinnen und Schüler motivierend dargestellte Übersicht über die aktuelle Forschung im Bereich der Elementarteilchenphysik

11 Ustd.

Summe

   

Hinweis: In diesem Bereich sind i. d. R. keine bzw. nur in Ausnahmefällen Realexperimente für Schulen möglich. Es sollte daher insbesondere die Möglichkeit genutzt werden, auf geeignete Internetmaterialien zurück zu greifen. Nachfolgend sind einige geeignet erscheinende Internetquellen aufgelistet. Internet-Materialien (Letzter Aufruf Jan 2012):


2.2      Fachdidaktische Grundsätze

In Absprache mit der Lehrerkonferenz sowie unter Berücksichtigung des Schul­programms hat die Fachkonferenz Physik die folgenden fachmethodischen und fachdidaktischen Grundsätze beschlossen. Die Grundsätze 1 bis 14 beziehen sich auf fachübergreifende Aspekte, die Grundsätze 15 bis 26 sind fachspezifisch angelegt.

Überfachliche Grundsätze:

  1. )Geeignete Problemstellungen zeichnen die Ziele des Unterrichts vor und bestimmen die Struktur der Lernprozesse.
  2. )Inhalt und Anforderungsniveau des Unterrichts entsprechen dem Leistungsvermögen der Schülerinnen und Schüler.
  3. )Die Unterrichtsgestaltung ist auf die Ziele und Inhalte abgestimmt.
  4. )Medien und Arbeitsmittel sind lernernah gewählt.
  5. )Die Schülerinnen und Schüler erreichen einen Lernzuwachs.
  6. )Der Unterricht fördert und fordert eine aktive Teilnahme der Lernenden.
  7. )Der Unterricht fördert die Zusammenarbeit zwischen den Lernenden und bietet ihnen Möglichkeiten zu eigenen Lösungen.
  8. )Der Unterricht berücksichtigt die individuellen Lernwege der einzelnen Schülerinnen und Schüler.
  9. )Die Lernenden erhalten Gelegenheit zu selbstständiger Arbeit und werden dabei unterstützt.
  10. )Der Unterricht fördert strukturierte und funktionale Einzel-, Partner- bzw. Gruppenarbeit sowie Arbeit in kooperativen Lernformen.
  11. )Der Unterricht fördert strukturierte und funktionale Arbeit im Plenum.
  12. )Die Lernumgebung ist vorbereitet; der Ordnungsrahmen wird eingehalten.
  13. )Die Lehr- und Lernzeit wird intensiv für Unterrichtszwecke genutzt.
  14. )Es herrscht ein positives pädagogisches Klima im Unterricht.

Fachliche Grundsätze:

  1. )Der Physikunterricht ist problemorientiert und Kontexten ausgerichtet.
  2. )Der Physikunterricht ist kognitiv aktivierend und verständnisfördernd.
  3. )Der Physikunterricht unterstützt durch seine experimentelle Ausrichtung Lernprozesse bei Schülerinnen und Schülern.
  4. )Der Physikunterricht knüpft an die Vorerfahrungen und das Vorwissen der Lernenden an.
  5. )Der Physikunterricht stärkt über entsprechende Arbeitsformen kommunikative Kompetenzen.
  6. )Der Physikunterricht bietet nach experimentellen oder deduktiven Erarbeitungsphasen immer auch Phasen der Reflexion, in denen der Prozess der Erkenntnisgewinnung bewusst gemacht wird.
  7. )Der Physikunterricht fördert das Einbringen individueller Lösungsideen und den Umgang mit unterschiedlichen Ansätzen. Dazu gehört auch eine positive Fehlerkultur.
  8. )Im Physikunterricht wird auf eine angemessene Fachsprache und die Kenntnis grundlegender Formeln geachtet. Schülerinnen und Schüler werden zu regelmäßiger, sorgfältiger und selbstständiger Dokumentation der erarbeiteten Unterrichtsinhalte angehalten.
  9. )Der Physikunterricht ist in seinen Anforderungen und im Hinblick auf die zu erreichenden Kompetenzen und deren Teilziele für die Schülerinnen und Schüler transparent.
  10. )Der Physikunterricht bietet immer wieder auch Phasen der Übung und des Transfers auf neue Aufgaben und Problemstellungen.
  11. )Der Physikunterricht bietet die Gelegenheit zum regelmäßigen wiederholenden Üben sowie zu selbstständigem   Aufarbeiten von Unterrichtsinhalten.
  12. )Im Physikunterricht wird ein GTR oder ein CAS verwendet. Die Messwertauswertung kann auf diese Weise oder per PC erfolgen.


2.3      Leistungskonzept

Für den Physikunterricht in der Sekundarstufe II ist an der Schule derzeit kein Schulbuch eingeführt.

2.4      Lehr- und Lernmittel

Für den Physikunterricht in der Sekundarstufe II ist an der Schule ist das Lehrwerk Fokus Physik vom Cornelsenverlag für die Grundkurse von EF, Q1 und Q1 eingeführt. Für die Leistungskurse wird der Metzler Physik aus dem Schroedelverlag verwendet.

Die Schülerinnen und Schüler arbeiten die im Unterricht behandelten Inhalte in häuslicher Arbeit nach.

Zu ihrer Unterstützung erhalten sie dazu:

a) eine Link-Liste „guter“ Adressen, die auf der ersten Fachkonferenz im Schuljahr von der Fachkonferenz aktualisiert und zur Verfügung gestellt wird,

b) ein Unterrichtsprotokoll, das für jede Stunde von jeweils einer Mitschülerin bzw. einem Mitschüler angefertigt und dem Kurs zur Verfügung gestellt wird.

Unterstützende Materialien sind auch im Lehrplannavigator des NRW-Bildungsportals angegeben. Verweise darauf finden sich über Links in den HTML-Fassungen des Kernlehrplans und des Musters für einen Schulinternen Lehrplan. Den Lehrplannavigator findet man für das Fach Physik unter:

http://www.standardsicherung.schulministerium.nrw.de/lehrplaene/lehrplannavigator-s-ii/gymnasiale-oberstufe/physik/


3         Entscheidungen zu fach- und unterrichtsübergreifenden Fragen

Die Fachkonferenz Physik hat sich im Rahmen des Schulprogramms für folgende zentrale Schwerpunkte entschieden:

Zusammenarbeit mit anderen Fächern

Durch die unterschiedliche Belegung von Fächern können Schülerinnen und Schüler Aspekte aus anderen Kursen mit in den Physikunterricht einfließen lassen. Es wird Wert darauf gelegt, dass in bestimmten Fragestellungen die Expertise einzelner Schülerinnen und Schüler gesucht wird, die aus einem von ihnen belegten Fach genauere Kenntnisse mitbringen und den Unterricht dadurch bereichern.

Vorbereitung auf die Erstellung der Facharbeit

Um eine einheitliche Grundlage für die Erstellung und Bewertung der Facharbeiten in der Jahrgangsstufe Q1 zu gewährleisten, findet im Vorfeld des Bearbeitungszeitraums ein fachübergreifender Projekttag statt, gefolgt von einem Besuch einer Universitätsbibliothek. Die AG Facharbeit hat schulinterne Richtlinien für Erstellung einer Facharbeit angefertigt, die die unterschiedlichen Arbeitsweisen in den wissenschaftlichen Fachbereichen berücksichtigen. Im Verlauf des Projekttages werden den Schülerinnen und Schülern in einer zentralen Veranstaltung und in Gruppen diese schulinternen Richtlinien vermittelt.

Exkursionen

In der gymnasialen Oberstufe sollen in Absprache mit der Stufenleitung nach Möglichkeit unterrichtsbegleitende Exkursionen durchgeführt werden. Diese sollen im Unterricht vor- bzw. nachbereitet werden.


4         Qualitätssicherung und Evaluation

Evaluation des schulinternen Curriculums

Das schulinterne Curriculum stellt keine starre Größe dar, sondern ist als „lebendes Dokument“ zu betrachten. Dementsprechend werden die Inhalte stetig überprüft, um ggf. Modifikationen vornehmen zu können. Die Fachkonferenz trägt durch diesen Prozess zur Qualitätsentwicklung und damit zur Qualitätssicherung des Faches Physik bei.

Die Evaluation erfolgt jährlich. Es werden die Erfahrungen des vergangenen Schuljahres in der Fachschaft gesammelt, bewertet und eventuell notwendige Konsequenzen und Handlungsschwerpunkte formuliert.